
OIFLcoPY

RI: A RULE-BASED COIFIGURER

0'} OF COMPUTER SYSTEMPiS

John McDermott

April, 1980

DEPARTMENT
of

COMPUTER SCIENCE
....D"TIC

JUL161~990

r DI S TRIBT7I-ON STATW S c A
Appr 'v :d d- Pu-lic release,

-,n-n rlbmted

Carnegie-Mellon University

90 07 16 460
> TWW AAAAA90613

CMU-CS-80-119

R: A RULE-BASED CONFIGURER
_Accession For

OF COMPUTER SYSTEMS 14TIS GFA&I
. DTIC TAB

Unanr- .inc- d [

John M cDerm ott Just i-_ _ _ .__-tion

April, 1980 D1tr "tin/

p v 'i1-'ity Codes

I. L:/or
istc al

Abstract. RI is a program. that configures VAX-11/780 computer systems. Given a customer's

order, it determines what, if any, modifications have to be made to the order for reasons of system

functionality and produces a number of diagrams showing how the various components on the order
are to be associated. The program is currently being used on a regular basis by Digital Equipment

Corporation's manufacturing organization. R1 is implemented as a production system. It has

sufficient knowledge of the configuration domain and of the peculiarities of the various configuration

constraints that at each step in the configuration process, it simply recognizes what to do.

Consequently, little search is required in order for it to configure a computer system. (---'2.)

APPROVED FOR PUCLIC RELEASE
DISTRIBUTION U. LIMITED

The development of R1 was supported by Digital Equipment Corporation. The research that led to the
development of OPS4, the language in which Ri is written, was sponsored by the Defense Advanced Research
Projects Agency (DOD), ARPA Order No. 3597, and monitored by the Air Force Avionics Laboratory under
Contract F33615-78-C- 1151. The views and conclusions contained in this document are those of the author and
should not be interpreted as representing the official policies, either expressed or implied, of Digital Equipment
Corporation, the Defense Advanced Research Projects Agency, or the U.S. Government. VAX, PDP-1 1, UNIBUS,
and MASSBUS are trademarks of Digital Equipment Corporation.

INTRODUCTION
R11 is a rule-based system that has much in common with other domain-specific systems that have

been developed over the past several years [Amarel 77, Waterman 78]. It differs from these systems

primarily in its use of Match rather than Generate-and-test as its central problem solving method;

rather than exploring several hypotheses until an acceptable one is found, it exploits its knowledge of

its task domain to generate a single acceptable solution. Rl's particular area of expertise is the

configuring of Digital Equipment Corporation's VAX-1 1/780 systems. Its input is a customer's order

and its output is a set of diagrams displaying the spatial relationships among the components on the

order; these diagrams are used by the technician who physically assembles the system. 2 Two

inter-dependent activities must be performed in configuring a VAX system.

" The customer's order must be determined to be complete; if it is not, whatever
components are missing must be added to the order.

" The spatial relationships among all of the components (including those that are added)

must be determined.

The criterion of success for whether a configuration is complete does not reside in any simple test,

but involves instead particular knowledge about all the individual components and their relationships.

The criterion of successful spatial arrangement is more compact (reflecting the uniform character of

geometric structure), but it too involves particular knowledge on a component by component basis.

Thus, the task accomplishment is defined by a large set of constraints embodying a large amount of

knowledge.

Although a significant portion of this paper is devoted to a description of precisely how Ri goes

about doing the configuration task, I have tried to avoid letting the details of Rl's inner workings

overshadow the domain independent lessons that have emerged from this research. There are two

important lessons:

e Recognition knowledge can be used to drive an expert system's behavior, provided that it
is possible to determine locally (ie. at each step) whether taking some particular action is
consistent with acceptable performance on the task.

* When an expert system is implemented as a production system, the job of refining and
extending the system's knowledge is quite easy.

The paper is divided into three sections. The first section describes the VAX-1 1/780 configuration

task and characterizes its difficulty. The second section describes R1 and discusses its evolution

Four years ago I couldn't even say "knowledge engineer", now I ...

2 R1's output for a sample order is shown in Appendix 2.

2

from a system with only the most limited capabilities to what might fairly be called, a true expert. The

third section describes Ri 's current level of expertise and isolates the design decisions that made the

building of Ri straightforward.

1. THE TASK
The VAX-11/780 is the first implementation of Digital Equipment Corporation's VAX-i1

architecture. It is similar in many respects to the PDP-1 1, though its virtual address space is 232

rather than 216. The VAX-1 1/780 uses a high speed synchronous bus, called the sbi (synchronous

backplane interconnect), as its primary interconnect. The central processor, one or two memory

control units, one to four massbus interfaces, and one to four unibus interfaces can be connected to

the sbi. The massbuses and particularly the unibuses can support a wide variety of peripheral

devices. Because the number of system variations is so large, the VAX configuration task is

non-trivial.

1.1. THESIZEOFTHETASK

A configurer must have two sorts of knowledge. First, he must have information about each of the

components that a customer might order. For each component, the configurer must know the

properties that are relevant to system configuration -- eg, its voltage, its frequency, how many devices

it can support (if it is a controller), how many ports it has; I will call this knowledge component

information. Second, he must have rules that enable him to associate components to form partial

configurations and to associate partial configurations to form a functionally acceptable system

configuration. These rules must indicate what components can (or must) be associated and what

constraints must be satisfied in order for these associations to be acceptable; I will call this

knowledge constraint knowledge.

The difficulty of the VAX configuration task is a function of the amount of component information

and the amount of constraint knowledge required to perform the task. It is fairly easy to estimate the

amount of component information that is needed. On the average, a configurer must know eight

properties of a component in order to be able to configure it appropriately. Currently about 420

components are supported for the VAX. 3 Thus there are over 3300 pieces of component information

that a VAX configurer must have access to.

Before Ri was developed, it would have been difficult to estimate accurately the amount of

constraint knowledge required for the configuration task. Much of the required knowledge was not

30f the 420 components, about 180 are actually bundles composed of various subsets of the remaining 240
components.

3

written down anywhere and thus the only source of estimates would have been individual human

experts. But the experts find the task of quantifying their constraint knowledge foreign. As I extracted

this knowledge from them, it became clear that their knowledge takes two forms: (1) The experts have

a sparse but highly reliable picture of their task domain. When asked to describe the configuration

task, they do so in terms of the subtasks involved and the various temporal relationships among these

subtasks. (2) They also have a considerable amount of very detailed knowledge that indicates the

features that particular partial configurations and unconfigured components must have in order for

the partial configurations to be extended in particular ways. Both sorts of knowledge are easily

expressable as rules. I extracted 480 rules. Of these, 96 define situations in which some subtask

should be initiated. The other 384 rules define situations in which some partial configuration should

be extended in some way.

1.2. THE CONSTRAINTS

This subsection provides two examples of specific subtasks that can arise within the configuration

task and indicates for each (1) the constraint knowledge involved, (2) the informational demands

imposed by that constraint knowledge, and (3) the extent to which the subtask presupposes other

subtasks. The first subtask is to place unibus modules into backplanes; the second is to assign

massbus devices to massbuses.

Example: Placing unibus modules in backplanes. Whenever more than one unibus option is

ordered for a VAX, it is necessary to place the modules on the unibus in an acceptable sequence. It is

straightforward to determine the optimal sequence for the modules; the modules are sorted on the

basis of their interrupt priority and within that on the basis of their transfer rate. Before a module can

be placed on the unibus, it is necessary to select a backplane. Several constraints come into play.

Backplanes come in two sizes (4-slot and 9-slot) and can have any of several pinning types. The

backplane selected must be of the pinning type required by the unibus module. To determine the size

of the backplane to be selected, it is necessary, first, to determine whether the size is constrained by

the box that the backplane will be placed in. A box can accommodate five 4-slot backplanes. In most

cases a 9-slot backpane may be used in place of two 4-slot backplanes; the exception is that a 9-slot

backplane may not occupy the space reserved for the second and third 4-slot backplanes.4 Assuming

that either a 4-slot or a 9-slot backplane would be acceptable, the next constraint to come into play is

that a 9-slot backplane should not be selected unless the next N modules in the optimal sequence all

require a backplane of the same type and will not all fit in a 4-slot backplane. Once a backplane is

4 The box that contains unibus modules has Iwo + 5 volt regulators. One of these regulators supplies power to
the first two 4-slot backplanes (or to the first 9-slot backplane); the second supplies power to the other
backplanes. All of the modules in a backplane must draw power from the same regulator.

4

selected, the board or boards comprising the next module in the optimal sequence can be placed in

the backplane. However, the first and last slots of a backplane cannot accomodate a full width board;

thus the configurer must make sure that the boards will physically fit into the backplane. There are

several other constraints. For example, the total amount of power that can be drawn from a regulator

is limited; also, if the length of the unibus exceeds a certain limit or if the load on the unibus exceeds a

certain limit, a backplane containing a unibus repeater must be placed in the box.

After a module has been placed in a backplane, there is frequently room for additional modules, but

the next module in the optimal sequence may require a backplane of a different type or more space

than is available in the backplane. At that point the configurer must decide whether to deviate from

the optimal sequence or to leave some of the backplane slots empty; the decision is based on the total

amount of box space available and the seriousness of the deviation. If there is sufficient box space to

accommodate the modules when they are in the optimal sequence, the optimal sequence should be

preserved (even if this entails adding additional backplanes to the order). If there is not sufficient

space, the seriousness of the deviation must be determined; there are some less than optimal

sequences that are acceptable. If the decision is that the deviation from the optimal would impair the

functionality of the system, then the configurer must add another box (and possibly a cabinet as well)

to the order; if the decision is that an acceptable suboptimal sequence can be found, then some

module other than the next one in the optimal sequence is placed in the backplane. In general, it is

acceptable to add a module that is not next in the optimal sequence if it meets all of the constraints

mentioned above and has a transfer rate that is lower than that of any other module with the same

interrupt priority that it will precede.

There are reasons, other than lack of slot space or power, why the configurer must consider

deviating from the optimal sequence. If the module that is to be added is a multiplexer, for example,

then in addition to the space and power constraints, there is the added constraint that sufficient panel

space must be available in the cabinet containing the box that will contain the multiplexer. If there is

not enough panel space in that cabinet, the configurer must decide whether to deviate from the

optimal ordering or to put all of the remaining modules in the remaining cabinets. Again, the decision

must be made on the basis of the total space available and the seriousness of the deviation. If there

are no other cabinets on the order, one must be added to the order.

This description of how unibus modules are configured brings to light most of the constraints

relevant to that task for a simple, single unibus system. But it does not make very clear what the

demands for component information are or the extent to which the task presupposes other tasks. The

component information that the rules require is, for a module, the module type, the number and size of

each board in the module, transfer rate and interrupt priority, the pinning type required, the power

drawn by the module, and the load it puts on the unibus. For a backplane, the information required is

5

the pinning type, the size, the power drawn by the modules that have been placed in it, and the slots

still available. For a box, the information is the box type, the amount of backplane space still available

in the box, and the length of and load on its unibus. For a cabinet the information is the cabinet type

and amount of box and panel space still available in the cabinet. Some of the tasks that this task

presupposes were mentioned: determining the optimal sequence, selecting a backplane, assigning

the backplane to a box, selecting some module other than the next one in the optimal sequence,

verifying (when the module is a multiplexer) that there is sufficient panel space in the cabinet. There

are several others: the unibus adaptors have to have been configured (so unibus length can be

computed); boxes have to have been assigned to cabinets and also to unibusc; (so unibus length can

be computed and so the amount of usable panel space will be known); the unibus cables that connect

backplanes must be selected (so unibus length can be computed); before a module that is a

laboratory peripheral can be put in a backplane, it must be determined that there is sufficient panel

space in the cabinet and sufficient space and power in the box for the backplane that will contain the

laboratory peripheral options.

Example: Assigning massbus devices to massbuses. Whenever an order contains massbus

devices, those devices must be assigned to massbuses. There are a number of rules that constrain

how these assignments can be made: Up to eight disk drives and master tape drives can be assigned

to each massbus. If there are enough massbuses so that disk drives and tape drives can be assigned

to separate massbuses, that should be done. If not, the order of assignment should be such that the

disk drives precede the tape drives on the massbus containing both types of devices (even though in

the spatial layout, some of the tape drives will be closer to the cpu cabinet -- and thus to the massbus

adaptor -- than will the disk drives). Unless there are more massbus adaptors than massbus devices,

each massbus should be assigned at least one massbus device. Disk drives are either single port or

dual port; each dual port disk drive must be assigned to two massbuses. Dual port disk drives should

precede single port disk drives on the massbus. Up to seven slave tape drives can be assigned to

each master tape drive. If the ratio of slave tape drives to master tape drives on an order is greater

than 7 to 1, a formatter must be added to one of the slave tape drives to make it a master.

If the number of massbus adaptors on the order is too few to accommodate the disk drives and

tape drives, then additional massbus adaptors must be added to the order. To determine whether all

of the massbus devices can be configured, it is necessary to determine whether the number of

adaptors exceeds the number permitted. Up to four massbus adaptors are permitted. If the total

number of unibus adaptors and massbus adaptors on the order is greater than three, a cpu expansion

cabinet is required. If the total number of unibus adaptors and massbus adaptors is greater than

seven and there is only one memory controller on the order, a second cpu expansion cabinet is

required. If the total number of unibus adaptors and massbus adaptors is greater than five and there

6

are two memory controllers, a second cpu expansion cabinet is required.

The component information required by the rules is the type of each massbus device (disk drive,

master tape drive, or slave tape drive), the number of ports (for disk drives), the number of devices

assigned to each massbus and the type of each device assigned, the number of slave tape drives

assigned to each master, and the space available for massbus adaptors in the cpu and cpu expansion

cabinets. The task of assigning slaves to masters must be done before either disk drives or master

tape drives are assigned so that the number of massbus adaptors required and the distribution of

devices among massbuses can be determined. The tasks of assigning memory and unibus adaptors

to the cpu and cpu expansion cabinets must be done before the massbus devices are assigned in

order to determine whether the number of massbus devices exceeds the maximum permitted and to

determine whether additional cabinet space will be required.

2. THE SYSTEM
This section focuses on how to represent the knowledge required for the VAX configuration task so

that the resulting system can perform the task expertly and efficiently and can easily acquire

additional knowledge about the domain. The architecture in which R1 is embedded is described.

Issues of search are discussed. The content and use of Rl's knowledge is analyzed. Finally, some

design and implementation history is provided in order to show the extent to which the development

of R1 was an evolutionary process.

2.1. THE PRODUCTION SYSTEM ARCHITECTURE

RI is implemented as a production system [Newell 77]. The particular production system language

used is OPS4. Since detailed descriptions of this language have been provided elsewhere [Forgy

79, Forgy 77, McDermott 78], only a brief indication of the basic features of the language will be

given in this paper. An OPS4 production system consists of a set of productions held in production

memory and a set of data elements (eg, state descriptions) held in working memory. A production is a

conditional statement composed of conditions and actions; a production has the form:

Pi (C1 C2 . .. Cn --> A1 A2 . .. Am)

Actions typically modify working memory by deleting, adding, or modifying a data element; users may,

however, define application specific actions. Conditions are templates; when each of the conditions

in a production can be matched by an element in working memory, the production is said to be

instantiated. An instantiation is an ordered pair of a production and a set of elements from working

memory that satisfy the conditions of the production. The OPS4 interpreter operates within a control

framework called the recognize-act cycle. During the recognition part of the cycle, it finds the

instantiation to be executed; during the act part, it performs the actions. The recognize-act cycle is

7

repeated until either no production can be instantiated or an action explicitly stops the processing.

Recognition can be divided into match and conflict resolution. During match, the interpreter finds the

set of all instantiations of productions that are satisfied on the current cycle. During conflict

resolution, it determines which instantiation to execute.

Each of Rl's productions (rules) embodies a piece of constraint knowledge. The production's

conditions typically look for situations in which a particular type of extension to a particular type of

partial configuration is permissable or required; the actions then effect that extension. Rl's rules are

such that on almost every cycle several rules can be instantiated -- often in a number of different

ways. From Ri's point of view, it often makes no difference which of these instantiations is executed;

in these cases, how OPS4 determines which instantiation to execute is irrelevant. 5 R1 does, however,

rely heavily on one of OPS4's conflict resolution strategies, the special case strategy, and so this

strategy needs to be understood. Given two instantiations, one of which contains a proper superset

of the data elements contained by the other, OPS4 will select the instantiation containing more data

elements on the assumption that it is specialized for the particular situation at hand. OPS4's cycle

time, though it is essentially independent of the size of both production memory and working memory

[Forgy 80], depends on particular features of the production system (eg, the number and complexity

of the conditions and actions in each production). The average cycle time for OPS4 interpreting Ri is

about 150 milliseconds.
6

As we saw in the previous section, there is a considerable amount of information which has to be

known about each component that can appear on an order. To provide R1 with access to this

information, OPS4's two memories have been augmented, for this application, with a third memory.

This memory, the data base, contains descriptions of each of the 420 components currently

supported for the VAX. Each entry in the data base consists of the name of a component and a set of

attribute/value pairs that indicate the properties of that component that are relevant for the

configuration task. Every component has a type attribute and a class attribute; the class of a

component determines what other attributes are relevant. There are 15 classes: bundle, cabinet, sbi

module, sbi device, box, backplane, massbus device, unibus device, unibus module, panel, power

supply, software, cable, document, and accessory. Each component description consists, on the

average, of eight attribute/value pairs; there are only about 50 distinct attributes, several of which are

common to all (or most) of the classes. Figure 2-1 shows five of the entries in the data base. The

RK711-EA is a bundle of components; it contains a 25 foot cable (70-12292-25), a disk drive

5 For example, a rule that bears on configuring some particular type of component will have more than one

instantiation if more than one such component is available; any of these instantiations could be executed. Or if
RI is filling a cabinet, it might make no difference which part of the cabinet is filled first.

60PS4 is implemented in MACLISP; R1 is run on a PDP-10 (model KL) and loads in 412 pages of core.

8

RK711-EA
CLASS: BUNDLE
TYPE: DISK DRIVE
SUPPORTED: YES
COMPONENT LIST: 1 070-12292-26

1 RK07-EA*
I RK611

RKO7-EA*
CLASS: UNIBUS DEVICE
TYPE: DISK DRIVE
SUPPORTED: YES
FLOOR RANK: 8
DEPTH: 28 INCHES
WIDTH: 24 INCHES
HEIGHT: 42 INCHES
UNIBUS MODULE REQUIRED: RK611
PORTS: 1
VOLTAGE: 120 VOLTS
FREQUENCY: 60 HERTZ
CABLE TYPE REQUIRED: 1 070-12292 FROM A DISK DRIVE UNIBUS MODULE

OR 1 070-12292 FROM A DISK DRIVE UNIBUS DEVICE

RK611
CLASS: BUNDLE
TYPE: DISK DRIVE
SUPPORTED: YES
COMPONENT LIST: 3 G727

1 M9202
1 070-12412-00
1 RK611*

070-12412-00
CLASS: BACKPLANE
TYPE: RK511
SUPPORTED: YES
NUMBER OF SYSTEM UNITS: 2
LENGTH: 2.0 FEET
NUMBER OF SLOTS: 9
SLOT TYPES: 3 SPC (1 TO 3)

6 RK611 (4 TO 9)

RK611*
CLASS: UNIBUS MODULE
TYPE: DISK DRIVE
SUPPORTED: YES
PRIORITY LEVEL: BUFFERED NPR
TRANSFER RATE: 212
NUMBER OF SYSTEM UNITS: 2
SLOTS REQUIRED: 6 RK611 (4 TO 9)
BOARD LIST: (HEX A M7904) (HEX A M7903) (HEX A M7902) (HEX A M7901) (HEX A M7900)
DC POWER DRAWN: 16.0 .176 .4
UNIBUS LOAD: I
NUMBER OF UNIBUS DEVICES SUPPORTED: 8
CABLE TYPE REQUIRED: 1 070-12292 FROM A DISK DRIVE UNIBUS DEVICE

Figure 2-1: Some representative items from the data base

(RKO-EA*), and a bundle of components (RK61 1) which itself consists of three continuity boards

(G727), a unibus jumper cable (M9202), a backplane (70-12412-00), and a disk drive controller

(RK611 *). The RKO7-EA" is a single port disk drive; it is a unibus device that requires an RK611 * as

its controller, and it is connected to that controller either directly or via another disk drive with a

70-12292 cable of some length. The 70-12412-00 is a 9-slot backplane whose "electrical length" is

two feet; its first three slots are for boards that require spc (small peripheral controller) pinning, and

9

the remaining six slots are for the RK611 *. The RK611 * is a disk drive controller which, because of its

interrupt priority and ta,isfer rate, is typically located toward the front of the unibus. The module is

comprised of five lx boards each of which start in lateral position "A"; it draws 15.0 amps of + 5 volt

current, .175 amps of -15 volt current, and .4 amps of + 15 volt current, and it generates 1 unibus

load. It can support up to eight disk drives and is connected to the first of these with a 70-12292 cable

of some length.

In addition to containing descriptions of VAX components, the data base also contains a few

cabinet templates. A cabinet template describes what space is available in a particular cabinet type.

These templates serve two purposes: (1) they enable R1 to know, at any point in the configuration

process, what container space is still available, and (2) they enable R1 to assign a specific location

(ie, coordinates) to each component that it places in a cabinet. Figure 2-2 shows the templates for the

cpu and unibus expansion cabinets. The components that may be ordered for the cpu cabinet are sbi

modules, power supplies, and an sbi device. The template for the cpu cabinet contains descriptions

of the space available for each of these classes of components and specifies what can be put where.

For example, up to six sbi modules fit into a cpu cabinet; each cabinet contains a cpu module and

some memory; in addition there are three "slots" for options that occupy 4 inches of space and one

slot for an option that occupies 3 inches of space. The description "cpu nexus-2 (3 5 23 30)"

indicates that the cpu module must be associated with nexus 2 of the sbi; the numbers in parentheses

indicate the top left and bottom right coordinates of the space that can be occupied by a cpu module.

The components that may be ordered for the unibus expansion cabinet are boxes and panels. Note

that multiplexer panels and (half-size) laboratory peripheral panels occupy the same space; one piece

of Rl's constraint knowledge is that two panels cannot occupy the same space at the same time.

Initially, working memory is empty. It grows, during the course of configuring a system, to contain

descriptions of the components ordered, and as various components are associated, to contain

descriptions of partial configurations as well as other component information required to do the

configuration task. A component is represented in working memory as a component-token with

associated attribute/value pairs. R1 retrieves information from the data base as the need for such

information arises. There are five actions that R1 can perform that provide it access to the data base.

Three of these functions, generate-tokens, find-token, and find-substitute-token, retrieve specified

information about a component (or list of components) from the data base, create a

component-token, and then add a partial description of the component to working memory. The other
two, get-attributes and get-template, augment the description of an already existing

component-token. Generate-tokens takes a list of component names and a set of attribute names as

its arguments, and returns, for each component on the list, a component-token and the value of each

of the specified attributes. Find-token takes a partial description (a set of attribute/value pairs) and a

10

CPU-CABINET
CLASS: CABINET
HEIGHT: 60 INCHES
WIDTH: 52 INCHES
DEPTH: 30 INCHES
SBI MODULE SPACE: CPU NEXUS-2 (3 5 23 30)

4-INCH-OPTION-SLOT I NEXUS-3 (23 5 27 30)
MEMORY NEXUS-4 (27 5 38 30)
4-INCH-OPTION-SLOT 2 NEXUS-5 (38 5 42 30)
4-INCH-OPTION-SLOT 3 NEXUS-5 (42 5 46 30)
3-INCH-OPTION-SLOT NEXUS-6 (46 5 49 30)

POWER SUPPLY SPACE: FPA NEXUS-1 (2 32 10 40)
CPU NEXUS-2 (10 32 18 40)
4-INCH-OPTION-SLOT 1 NEXUS-3 (18 32 28 40)
MEMORY NEXUS-4 (26 32 34 40)
4-INCH-OPTION-SLOT 2 NEXUS-S (34 32 42 40)
CLOCK-BATTERY (2 49 26 52)
MEMORY-BATTERY (2 46 26 49)

SBI DEVICE SPACE: 10 (2 62 50 66)

UBX-CABINET
CLASS: CABINET
HEIGHT: 60 INCHES
WIDTH: 28 INCHES
DEPTH: 30 INCHES
BOX SPACE: UBX 1 (2 39 26 48)

UBX 2 (2 13 26 22)
PANEL SPACE: MUX 11 BACK (14 27 26 36)

MUX 2 2 BACK (2 2 26 11)
MUX 3 3 FRONT (2 27 14 36)
LPA 1 I BACK (14 27 26 31)
LPA 1 2 BACK (14 32 26 36)
LPA 2 3 BACK (2 2 26 6)
LPA 2 4 BACK (2 7 26 11)
LPA 3 5 FRONT (2 27 14 31)
LPA 3 6 FRONT (2 32 14 36)

Figure 2-2: Two sample templates

set of attributes as its arguments, finds a component in the data base matching that partial

description, and returns a component-token and the value of each of the specified attributes.

Find-substitute-token takes a component name, a partial description, an exception list, and a set of

attribute names as its arguments, finds a component in the data base that is like the original

component except that it satisfies the partial description and may differ with respect to the attributes

on the exception list, and returns a new component-token and the values of the specified attributes.

Get-attributes takes a component, a component-token, and a set of attribute names as its arguments

and returns the values of the specified attributes. Get-template takes a template name and a

component-token as its arguments and returns the attribute/value pairs of that template.

In addition to containing component descriptions, working memory contains three other types of

elements:

" Elements that define partial configurations.

" Elements that indicate the results of various sorts of computations.

11

* Context symbols.

An element that defines a partial configuration contains a description of the relationships among two

or more components. Typically, these elements indicate either that one component is to be

connected to another by means of a cable or, in the case of a component that is a container, the

spatial relationship between the container and each of the components it contains. An element that

indicates the result of some computation contains a symbol identifying the computation and one or

more values indicating the result. The component descriptions, together with the elements that define

partial configurations and the elements that indicate the results of various computations, constitute

the component information. A context symbol contains a context (subtask) name and an indication of

whether or not the context is active.

Production memory contains constraint knowledge -- all of RI's permanent knowledge about how

to configure VAX systems. R1 currently has 772 rules that enable it to perform the task. An English

translation of a sample rule is shown in Figure 2-3. The first condition indicates that the context in

which this rule is relevant is the distributing of massbus devices among massbuses. The other five

conditions specify one of the sets of constraints that must be satisfied within this context in order for a

disk drive to be assigned to a massbus. When an instantiation of this rule is executed, one of the

single port disk drives on the order is assigned to one of the massbuses.

DISTRIBUTE-MB-DEVICES-3

IF: THE MOST CURRENT ACTIVE CONTEXT IS DISTRIBUTING MASSBUS DEVICES
AND THERE IS A SINGLE PORT DISK DRIVE

THAT HAS NOT BEEN ASSIGNED TO A MASSBUS
AND THERE ARE H1O UNASSIGNED DUAL PORT DISK DRIVES
AND THE NUMBER OF DEVICES THAT EACH NASSBUS SHOULD SUPPORT IS KNOWN
AND THERE IS A MASSBUS THAT HAS BEEN ASSIGNED AT LEAST ONE DISK DRIVE

AND THAT SHOULD SUPPORT ADDITIONAL DISK DRIVES
AND THE TYPE OF CABLE NEEDED TO CONNECT THE DISK DRIVE

TO THE PREVIOUS DEVICE ON THE MASSBUS IS KNOWN

THEM: ASSIGN THE DISK DRIVE TO THE MASSBUS

Figure 2-3: Asamplerule

2.2. CONTEXTS

The configuration task can be viewed as a hierarchy of subtasks that have strong temporal

interdependencies. The actions required within each subtask are highly variable; they depend

completely on the particular combination of components that appear on an order and the way in

which sets of those components have been configured up to the point when the new subtask

becomes appropriate. It is possible, however, to indicate what actions (including the action of
initiating a new subtask) are appropriate within a subtask in terms of a relatively small number of rules

that are each sensitive to a few salient features of the current situation.

12

RI's approach to exploiting the temporal relationships among subtasks is straightforward. The

function of several of Ri's rules is to recognize, on the basis of the component information in working

memory, when a new subtask should be initiated. When one of these rules fires, it adds a context

symbol to working memory. Each context symbol contains a context name, an indication of whether

the context is active or not-active, and an indication of when (ie, how recently) the context was made

active. Each rule contains two condition elements that are sensitive to context symbols. Together

these conditions insure that only those rules that bear on the most current active context will fire.

Which of these rules fire depends on what descriptions of components, partial configurations, and

computation results are in working memory. Typically, a few of the rules associated with a context

contain the constraint knowledge ordinarily relevant within that context. Other rules associated with

the context are special case rules; these rules, when their more stringent conditions are satisfied, fire

before (and often instead of) the ordinary case rules. Each context has an associated rule containing

only the two condition elements sensitive to a context symbol. This rule deactivates the current

context. Since each deactivation rule is a general case of all the other rules sensitive to its context, it

fires only after the other satisfied rules have fired. R1, then, is a recognition-driven system that relies

on its knowledge of the structure of the configuration task as well as on information about the set of

components it is configuring to determine what to do. When it has several courses of action open to

it, it falls back on general (non-task-specific) strategies for selecting among alternatives. But it needs

only two such strategies: (1) it uses special case rules in preference to more general ones, and (2) it

does all that it can within a context before leaving that context.

The contexts that Ri makes use of in order to do the configuration task were not arrived at through

a rigorous analysis of the demands of the configuration task. Rather, they reflect the way in which

experts who do the task actually approach it. As might be expected, as Ri evolved it became

apparent that some modifications and reordering of the contexts would make the processing easier,

and so these changes were made. But basically, the approach that R1 takes to the task is the same as

that of humans who do it. At the top level, the task divides up into 6 major subtasks:

1. Determine whether there is anything grossly wrong with the order (eg, mismatched items,
major pre-requisites missing).

2. Put the appropriate components in the cpu and cpu expansion cabinets.

3. Put boxes in the unibus expansion cabinet and put the appropriate components in those

boxes.

4. Put panels in the unibus expansion cabinets.

5. Lay out the system on the floor.

6. Do the cabling.

13

The following paragraphs give a rough picture of what each of these subtasks involves; the

purpose of this excursion into the guts of the configuration task is to provide some concreteness on

which to build the subsequent discussions of the effectiveness (and adequacy) of RI's problem

solving method and of the use that it makes of its configuration knowledge.

Subtask # 1 (196 rules). The first subtask is to determine whether there are major problems with

the order and to rectify them if possible. The work that R1 does during this stage is considerably more

complex than that done by human experts during this stage. Humans tend to assume that an order

will be unproblematic and wait until a problem actually arises before dealing with it. The advantage of

the human approach is that it saves an unnecessary first step when configuring unproblematic orders;

its disadvantage is that if problems do arise, they may impact earlier decisions and thus require

redoing part of the configuration. R1 first retrieves partial descriptions of each of the components on

the order. If a component is a bundle, it retrieves a partial description of each of the components on

that bundle's component list. Then R1 checks to see whether it has been instructed to treat any of the

components in an exceptional way -- eg, to leave some components (presumably spares)

unconfigured. It next determines whether all of the components on the order have compatible voltage

and frequency requirements, and if not, substitutes components of the appropriate voltage and

frequency. Finally R1 determines, to the extent that it can before actually doing the configuration,

whether any of the massbus or unibus devices on the order have pre-requisite components that are

not on the order. It makes sure that there is at least one master tape drive for every seven slaves, that

there are enough adaptors for the massbus devices, and that there is enough cabinet space for the

adaptors. It makes sure that there is at least one unibus adaptor and that there are enough

controllers for the unibus devices. It also makes sure that there are enough controllers and enough

cabinet space for the memory ordered. If any pre-requisite components are missing, it adds them to

the order.

Subtask # 2 (87 rules). The second subtask involves putting whatever components belong in the

cpu and cpu expansion cabinet into those cabinets; in performing this subtask, R1 relies heavily on

the templates for the cabinets. It augments the description of whatever cpu cabinet is on the order
with the information in the template for the cpu cabinet. R1 then finds a component in working

memory whose class is sbi module and whose type is the type of one of the template elements for the
sbi. It adds the component (and the coordinates it will occupy) to the list of components that are to be

put in the cpu cabinet and deletes the template element. It repeats this step until no template

elements remain that can be paired with a component on the order. There are, of course, a number of

decisions that have to get made along the way. When putting in the cpu module, R1 must check to

see if either the floating point accelerator or writeable control store options are on the order, and if so,

put the boards for these options in the appropriate place in the cpu backplane. When putting in the

14

memory, R1 'must know how many memory controllers and how many adaptors have been ordered in

order to know whether or not to interleave the memory. As it puts in the massbus adaptors, R1 must
determine the relationships of the massbus devices to one another so that it will know which devices

go with which adaptors; this task is non-trivial since there are a number of rules having to do with how
to distribute massbus devices. As R1 puts modules on the sbi, it must also put the appropriate power
supplies into the cabinet; in order to do this, it needs to know what regulators are required for what
modules. If there are cpu expansion cabinets on the order, R1 fills them using the same rules that it

uses for the cpu cabinet; the only difference between the two types of cabinets is that the expansion
cabinet has no cpu, and may or may not contain memory. When all of the sbi modules have been
placed in cabinets, Ri puts the sbi terminator in the appropriate place in the final cabinet and adds

module simulators to any option slots that have not been filled.

Subtask # 3 (256 rules). The third subtask is to put boxes into the unibus expansion cabinets,
and to put unibus modules into the boxes. Given a limited amount of box space, the information that
is needed to determine whether a module has been configured acceptably is not available until after

all of the modules have been configured. Thus R1 sometimes has to generate a number of candidate
configurations before it finds one that is acceptable. There are a number of independent constraints

on the placing of unibus modules:

1. Each module must be put in a backplane slot of the appropriate pinning type.

2. The position of each backplane in a box must be such that its modules draw power from a
single set of regulators.

3. There is a limit on the amount of power that the modules in a backplane can collectively
draw from any regulator.

4. If a module requires panel space, that panel space must be in the cabinet containing the
module.

5. If a module requires other supporting modules either in the same backplane or in the
same box, space must be available for those supporting modules.

6. The modules should be placed on the unibus in a sequence that is as close to the optimal
sequence as possible.

If only the first five constraints applied, R1 would generate only acceptable configurations; but the
addition of the sixth constraint, since it is elastic, makes that impossible. In order to limit the amount

of search it has to do to configure the unibus modules. R1 interprets the sixth constraint somewhat
liberally. It defines three equivalence classes of sequences: optimal (any ordering that is optimal),

almost-optimal (any less than optimal ordering such that no module whose interrupt priority is i and
whose transfer rate is j, occurs before a module whose interrupt priority is i and whose transfer rate is

less than j). and suboptimal (any other ordering).

15

To configure a set of unibus modules, Ri first estimates the amount of space required to configure

the unibus modules optimally and the amount of space required to configure the modules

suboptimally; it then determines the optimal sequence. If the amount of box space available is greater

than or equal to the space required for an optimal configuration, it tries to place the modules on the

unibus in that sequence. If it fails (or if the amount of box space available is less than the space
required for an optimal configuration, but greater than that required for a suboptimal configuration), it

retries the subtask, modifying the sequence whenever such a modification would save space and

result in an almost-optimal sequence. If this attempt fails, it retries the subtask again, but this time

modifies the sequence whenever such a modification would save space. If this attempt fails or if the

amount of box space available is less than that required for a suboptimal configuration, R1 adds

another box to the order and retries the subtask.

With this background, the subtask of configuring unibus cabinets, boxes and modules can now be

described. Rl's first step is to assign each box to a unibus and each box to a cabinet. To determine

whether a particular unibus module can be placed in some backplane, the distance from the

beginning of the unibus (the adapter) to that backplane must be known. For R1 to have this

information, the box assignments have to have been made. Once Ri has assigned each box to a

cabinet, it starts to fill the first box on each unibus. Filling a box involves first selecting a module (and

a box to put it in if the system has more than one unibus). If R1 is attempting to configure the modules

in a way that will preserve the optimal sequence, module selection is straightforward. If R1 is willing

to accept an almost-optimal or a suboptimal configuration, it selects the next module in the optimal

sequence unless that module requires a backplane that will occupy more space than remains in the

box; if there is insufficient space for such a backplane, R1 considers each of the remaining modules

to see if there is one that will satisfy the relaxed sequencing constraint and requires a backplane that

will fit in the box. After selecting a module, R1 selects (or adds to the order) a backplane that has

pinning and a size that will accommodate the module; if there are two such backplanes on the order,

one of which is a 4-slot backplane and the other a 9-slot, R1 selects the 4-slot backplane unless the

next N modules in the optimal sequence would not all fit in the 4-slot backplane. After selecting a

backplane, Ri assigns it to a box, and then generates elements that serve as a backplane template.

At this point, R1 attempts to put the module in the backplane. Although it knows that there is

sufficient space for the module in the backplane, it does not know whether the other constraints are

satisfied. If adding this module would result in the power-drawn limit being exceeded, or if the

unibus-load limit would be exceeded, or if required panel space is not available, or if there is not room

in the backplane or box for supporting modules if any are required, then the attempt to add the

module will fail. Here again if R1 is willing to accept a less than optimal configuration, it will try a

different module. As long as space remains in the backplane and there are modules that have not

16

been configured, R1 will try to put additional modules in the backplane. The module selection

process is identical to the one described above, except that a backplane is already available. When

R1 has put all of the modules that it can into a backplane, there are a number of things it must do

before it is finished with that backplane. Each of the unfilled spc slots in the backplane must be filled

with a continuity card. Then R1 must note that the length of the unibus has increased by the length of

the backplane, and must check to see whether (either because of the unibus length or because of the

unibus load) it needs to put a unibus repeater in the next position on the unibus. R1 then adds a two

foot jumper cable to connect the backplane it just filled to the next (as yet unspecified) backplane. If

one of the modules in the backplane has an associated lpa-backplane, it adds the lpa-backplane to

the box.

When R1 has finished filling a box, it checks to see if there are more modules or backplanes that

need to be put in a box; if there are, it replaces the two foot jumper cable that it has associated with

the last backplane in the box with a longer jumper cable (the length being determined by the distance

between the box just filled and the next box to be filled); if there are no unconfigured modules or

backplanes, RI replaces the two foot jumper cable with a unibus terminator. If RI is able to configure

all of the unibus modules in the available box space, it goes on to the fourth subtask. If it cannot, it

either relaxes the sequencing constraint or adds another box to the order and tries again.

Subtask # 4 (30 rules). The fourth subtask is to assign panels to cabinets and to associate those

panels with unibus modules and with whatever devices the modules serve. Since by this point all of

the unibus modules have been configured and since panel space has been assigned to each module

requiring it, all that R1 has to do is select a panel of the appropriate size and line type (or add one to

the order) and assign that panel to the panel space set aside for the module. Then RI assigns those

devices that must connect to a module via a panel to a panel of the appropriate type; if more than one

such panel is available, R1 distributes the assignments evenly across panels.

Su btask # 5 (61 rules). The fifth subtask is to generate a floor layout for the system (ie, to specifiy

the spatial relationships among all of the cabinets and free standing devices). To do this subtask

adequately, it is necessary to have information about the site at which the system will be installed (eg,

room dimensions, locations of obstructions) that is not currently available to R1. At the moment,

therefore, all that R1 does is group together those components that must be spatially proximate and

then lay the devices out in a line in the appropriate order. This subtask is relatively easy since all of

the inter-device assignments have been made and information about how close a particular device

should be to the cpu cabinet relative to other devices is in RI's data base. The only additional

knowedge that R1 needs for this subtask is the knowledge of when the spatial ordering of devices

should be different from their electrical ordering. It needs to know, for example, that though tape

drives always come after disk drives when both are assigned to the same massbus, tape drives are

17

sometimes placed nearer to the cpu cabinet (ie, are bolted to the last unibus expansion cabinet).

Subtask # 6 (36 rules). The final subtask is to specify what cables are to be used to connect each

device to the other devices to which it has been assigned. Given the inter-device assignments, all that

Ri has to do is determine the distance between each pair of devices that must be connected and find

(or add) a cable of the type and length required. Because Ri does not currently lay out systems in the

way they will be laid out at the installation site, it does not do an adequate job of determining the

precise cable lengths required. However, since much of the cabling is between devices that have a

site-independent spatial relationship, the job that R1 does is more helpful than might first appear. All

of the cabinets must be bolted together, and devices associated with the same controller must be

physically proximate. Thus, the only cable lengths that R1 cannot determine are those involving

cables that connect a controller to the first device it serves. In order to make these cabling

assignments, R1 selects the controller/device pair that is farthest apart in the linear layout generated

during the fifth subtask and selects for that pair the longest cable on the order that is of the

appropriate type. Once R1 has finished the cabling task, the system is configured; at that point, R1

generates output describing the configuration.

2.3. SEARCHING THE SPACE OF POSSIBLE CONFIGURATIONS

The configuration task performed by RI requires finding an acceptable configuration within the

space of possible configurations. The basic operations that R1 uses to explore this space are

creating and extending partial configurations. Other of Ri's operations, such as retrieving

component information from the data base or counting the number of components of a particular

type, prepare the way for the actual acts of configuration. It would appear that performing any task

for which there are many constaints on an acceptable solution requires a heuristic search (ie, a

combinatonal search in which candidate partial solutions are constructed and their potential

evaluated). This has been the experience of Al in all sorts of tasks [Nilsson 80] and in particular in

real-world domains where the methods used have been characterized as forms of Generate-and-test

[Feigenbaum 77]. R1, however, by and large does without search. It is useful to understand just what

the structure of Rl's method is and what permits search to be avoided.

Rl's method is essentially a generalized form of matching; that is, it is the method normally used to

match a form (ie, a symbolic expression containing variables) against an exemplar in order to

instantiate the variables, thus making the form identical to the exemplar. Matching is usually not

considered to be search. In typical Al heuristic search programs, it is taken to be a part of the

computation performed within a state to determine which operators are applicable. However, Match

is clearly also a search technique, analagous to Generate-and-test, Means-ends Analysis, etc. The

Match method can be found in some of the earliest heuristic search programs [Newell 63], and later

18

Newell included a generalized form of Match as one of his weak methods [Newell 69].

The search space for Match is the space of all instantiations of the variables in a form. Each state

in the space is a partially instantiated form. The form is the body of domain specific knowledge that

defines acceptable sets of instantiations; thus the form holds the constraints for task satisfaction.

This knowledge serves two functions: (1) it enables the form to be brought into correspondence with

the exemplar, and (2) it permits local tests (comparisons) to be made between the form and the

exemplar at each point of correspondence. The primary condition on Match, then, is

* The Correspondence Condition: Match can be successful only if each constituent of the
form can take on a locally determined value (through the comparison of the form to the
exemplar at the point of correspondence).

A consequence of the correspondence condition is that Match never requires backtracking. If there

is at least one solution state, Match will find a path from the initial state to a solution state without

generating any false paths. This condition abstracts from all of the details of how expressions are put

in correspondence. It states only the essential condition that permits the operators to be selected and

applied in a single pass.

The decision that determines the next step in the space (ie, the next instantiation) is local. This

does not imply, however, that the space is decomposable into a set of completely independent

subtasks. Instantiating a variable can have global consequences for the final solution and hence for

subsequent instantiations (because the substitution must take place in all occurrences). However,
none of these consequences affect what has already been matched. Indeed, the result of putting the

form into correspondence with the exemplar is to impose an order on the instantiations (ie, the search

through the space) so that all global consequences are pushed into the unmatched portion of the

form. In typical string matching this requires only that matching start from one end of the string or the

other. This can be stated as another general condition:

* The Propagation Condition: A partial ordering on decisions must exist such that the
consequences of applying an operator bear only on aspects of the solution that have not
yet been determined.

Applying this analysis of Match to R1, the initial state is the set of descriptions of the components

ordered. The intermediate states are sets of descriptions of partial configurations and the as yet

unconfigured components. At each decision point, the constraint knowledge about what next step

can be taken (ie, what next partial configuration to produce) is provided by Ri's rules. Ri has enough

knowledge to satisfy the correspondence condition stated above. Thus, there is no need for

backtracking, since its knowledge is sufficient to determine an acceptable next step.

Rl's rules can be divided into three categories based on their role in this generalized Match

19

method. (1) Operator rules take the actual next step in creating or extending a partial configuration.

(2) Sequencing rules determine the order in which decisions need to be made to satisfy the

propagation condition. These rules are primarily those involved in the sequencing of contexts, and

this sequencing is thus seen to be an essential part of Rl's method, not simply an additional bit of
"programming". (3) Information-gathering rules access the data base or perform various

computations in order to provide the information needed for operator and sequencing rule selection.

This information has an important subsequent use that has no analogue in the simple Match task. It

provides a justification for decisions (and their consequences) that is necessary in order to preserve

the propagation condition.

The power and limitations of Match are exemplified by two interesting phenomena. The first one is

that humans often do not solve the configuration task by Match, but rather by a more general (weaker)

heuristic search; that is, they engage in backtracking. This is true of novices and to a lesser extent

also true of experienced configurers. Novices in particular frequently make decisions in the wrong

order or neglect to preserve information needed for future decisions. The second phenomenon is

that, for R1, Match is not in fact sufficient for the complete task. The subtask of placing modules on

the unibus is formulated essentially as a bin-packing problem -- namely how to find an optimal

sequence that fits within spatial and power-load constraints. No way of solving this problem without

search is known (short of table lookup, if the configurations are limited enough to be enumerated).
R1 does not use a fully adequate search method for this subtask, but does a simple

Generate-and-test, using Match as a heuristic guide.

The desirability of using a generalized Match method is hardly in doubt; it is good to avoid search,

especially when this can be done at low cost. The two phenomena above shed some light on when it

is possible to use Match. As the bin-packing subtask shows, it depends in part on the specific nature

of the task environment (ie, whether its structure is sufficiently interlocking). Bin packing has been

studied enough to attribute the necessity of search to the structure of the task. However, as the

search behavior of humans shows, tasks almost invariably become more tractable as they become

better understood. The role of experience with a task is to permit the acquisition of enough

knowledge, both of decision order and of decision content, to satisfy the two conditions stated above,

thus permitting Match to be used.

R1 appears to be the first of the "knowledge-engineered" domain-specific Al systems to employ

Match as its central problem solving method. As mentioned above, the more typical approach has

been to develop systems whose central method is Generate-and-test. Such systems contain

knowledge that enables them to generate one or more hypotheses that explain (or otherwise give

structure to) the phenomena proper to their domains; these hypotheses are then tested against some

particular collection of empirical data. The systems differ from one another in the degree to which

20

they make use of the data in generating hypotheses. Some systems generate hypotheses

independently of the d,, to be explained; others generate partial hypotheses that are then modified

and extended on the basis of the data. MYCIN [Davis 77], for example, has a collection of rules that

allow it to infer the likely causes of a bacterial infection in the blood. Hypothesis generation is

accomplished by backward chaining of the rules. If a rule's conditions are not known to be true or

false (on the basis of patient data), rules that bear on the truth or falsity of its conditions must be

examined. Ultimately this process leads back to the data; the data either confirms or disconfirms the

hypothesis. Though other domain-specific systems make more use of the data in selecting

hypotheses to generate, they also use the data to test hypotheses.

The feature that distinguishes R1 most clearly from these other systems is that it attempts to

generate only a single hypothesis -- the solution. In R1, the knowledge that other systems would use
to test hypotheses is part of the generator. As we have seen, except in the case of unibus module

configuration, this strategy has been successful. Clearly its success is due in part to the structure of

the configuration domain. It will he interesting to see to what extent this strategy can be successfully

applied in other domains.

2.4. THE CONTENT OF R1 'S RULES

Rl's rules can be distinguished from one another in terms of the functions that they perform and

the extent to which they embody domain knowledge. As Figure 2-4 shows, only 480 of Rl's 772 rules

contain knowledge that is directly related to the configuration task. The other 292 rules contain more

general knowledge. About a third of this more general knowledge is used by R1 to generate its

output; this knowledge is not used until after the configuration task has been finished. Another third
consists of ruled that deactivate contexts; essentially these rules contain only the knowledge that if

one is in a context and there is nothing left to do, one should exit from the context.7 The final third of
the general knowledge is about evenly divided between rules whose function is to do various kinds of

counting tasks, and rules that generate "empty" data structures for the domain knowledge rules to

use. Of the rules that embody domain knowledge, about a fourth generate new contexts, another

fourth deal with missing pre-requisites (mostly by adding whatever component is missing to the

order), and another fourth create or extend partial configurations. The final fourth is about evenly

divided between rules that retrieve partial descriptions of components from the data base, and rules

that do various sorts of computations. The classification of these domain specific rules is somewhat

rough since many of these rules have dual functions.

7 These rules are, embarassingly enough, completely unnecessary since their function could (and soon will)
be taken over by a single general rule.

21

Domain-specific rules General rules

Context generation (96 rules) Output generation(106 rules)

Pre-requisites (127 rules)

Context deactivation
(84 rules)

Component association (156 rules)

Counting
(54 rules)

Retrieval (54 rules)

Set-up
Computation (47 rules) (48 rules)

Figure 2-4: The distribution of Rl's knowledge

The knowledge encoded in individual rules is, of course, just the knowledge needed to make use of

the component information and context symbols that can appear in working memory. Thus all of RI's

constraint knowledge falls into the following four classes:

" Knowledge of the significance of the various attributes of VAX components and of how to
retrieve component information from the data base.

" Knowledge of how to recognize and of how to construct partial configurations.

" Knowledge of how to make and make use of various kinds of computations.

" Knowledge of what actions are appropriate within various contexts and of what contexts
to enter from other contexts.

R1 has essentially no knowledge of the defining characteristics of its contexts; it simply has names for

contexts, and these names are bare symbols with no associated descriptions. It recognizes 84

context names;s each context has, on the average, about eight rules associated with it.

Table 2-1 shows the relative frequency with which the various sorts of constraint knowledge occur

as conditions and actions. The first column provides this breakdown for all of RI's rules; the second

8 This excludes the 16 context names recognized by the 106 rules that generate output.

22

Mean number in Mean number in
each rule each domain rule

Components
conditions 2.02 2.79
actions 1.24 1.82

assertions 0.61 0.97
modifications 0.30 0.43
deletions 0.33 0.42

Partial configurations
conditions 1.15 1.55
actions 0.52 0.68

assertions 0.20 0.31
modifications 0.25 0.29
deletions 0.07 0.08

Results of computations
conditions 1.06 1.20
actions 0.72 0.82

assertions 0.31 0.35
modifications 0.27 0.32
deletions 0.14 0.15

Contexts
conditions 2.04 2.07
actions 0.35 0.32

assertions O.19 0.28
modifications 0.16 0.04
deletions 0.00 0.00

Total
conditions 6.27 7.62
actions 2.83 3.64

assertions 1.30 1.91
modifications 0.98 1.09
deletions 0.55 0.64

Table 2-1: The composition of Ri's knowledge

column provides the breakdown for just the domain-specific rules. In order for the numbers in Table

2-1 to have any significance, it is necessary to understand how much information each piece of

knowledge contains. In general, each working memory element contains from three to six pieces of

information that R1 can use. Elements of type component each contain a component-token and, on

the average, two attribute/value pairs. Elements of type partial configuration almost always contain at

least two component-tokens, a symbol indicating their interrelationship, and often other symbols that

further specify the relationship. When the partial configuration element is a list of the contents of a

cabinet or some other container, it may contain 20 or more pieces of information. But Ri typically

23

does not look very far inside these lists; it merely builds them up for its output routines. Elements of

type computational result contain a symbol identifying the purpose of the computation and usually

two or three values. Elements of type context contain a context name, an indication of whether or not

the context is active, and an indication of how recently the context was asserted. The amount of

information in a rule is proportional to the amount of information in these working memory elements.

Conditions are patterns that are instantiated by the working memory elements; typically a pattern will

contain some constants, some variables that occur only once in the condition part of the rule, and

some variables that occur more than once in the condition part of the rule and thus function to

constrain the combinations of elements that can instantiate the rule. Actions are either functions that

retrieve information from the data base, modify or delete specified elements in working memory, or

perform various arithmetic calculations, or they are patterns that are added to working memory after

being instantiated with values bound in the conditional part of the rule.

Given this background, the numbers in Table 2-1 provide some insight into the amount of

constraint knowledge that R1 has. Since the primary interest is in understanding the amount of

domain knowledge required for the task, I will focus on the numbers in the second column; they do

not differ significantly from the numbers in the first column except they show that Rl's domain rules

are more discriminating than its more general rules. Each of the task-specific rules has at least two

conditions that are sensitive to the context. One of these conditions specifies that a particular context

must be active; the other that there not be a more recent active context. The number is actually

slightly greater than 2 because a few rules use the fact that a context is no longer active to determine

that an action is appropriate. Beyond the context information, there are about 5.5 conditions, each of

which can draw on from three to six pieces of information. This suggests that by and large, each rule

captures only a very small part of the knowledge in the domain. The ratio of conditions to actions is

about 2 to 1.

Rather free English translations of four of the nine rules associated with the context of assigning

power supplies to sbi modules are shown in Figure 2-5. The first rule adds a power supply to the

order if one is needed and if all of the power supplies ordered have already been configured. The

second rule configures a power supply -- ie, indicates what sbi module the power supply should be

connected to and where in what cabinet it should be put. The fourth rule has the same function as the

second, and is fired instead of the second when both are satisfied because it is a special case. It

contains the extra knowledge that when the sbi module that needs a power supply is a unibus

adaptor, a particular regulator (the H7101) must be associated with the power supply. The third rule

fires if all of the conditions required to satisfy the fourth rule are satisfied except the availability of a

regulator; it adds the appropriate regulator to the order. The character of these rules is fairly

representative of the rules in each of the contexts. In general, a context has a few rules associated

24

ASSIGN-POWER-SUPPLY-1

IF: THE MOST CURRENT ACTIVE CONTEXT IS ASSIGNING A POWER SUPPLY
AND AN SBI MODULE OF ANY TYPE HAS BEEN PUT IN A CABINET
AND THE POSITION IT OCCUPIES IN THE CABINET (ITS NEXUS) IS KNOWN
AND THERE IS SPACE AVAILABLE IN THE CABINET FOR A POWER SUPPLY FOR THAT NEXUS
AND THERE IS NO AVAILABLE POWER SUPPLY
AND THE VOLTAGE AND FREQUENCY OF THE COMPONENTS ON THE ORDER IS KNOWN

THEN: FIND A POWER SUPPLY OF THAT VOLTAGE AND FREQUENCY AND ADD IT TO THE ORDER

ASSIGN-POWER-SUPPLY-2

IF: THE MOST CURRENT ACTIVE CONTEXT IS ASSIGNING A POWER SUPPLY
AND AN SBI MODULE OF ANY TYPE HAS BFEN PUT IN A CABINET
AND THE POSITION IT OCCUPIES IN THE CABINET (ITS NEXUS) IS KNOWN
AND THERE IS SPACE AVAILABLE IN THE CABINET FOR A POWER SUPPLY FOR THAT NEXUS
AND THERE IS AN AVAILABLE POWER SUPPLY

THEN: PUT THE POWER SUPPLY IN THE CABINET IN THE AVAILABLE SPACE

ASSIGN-POWER-SUPPLY-6

IF: THE MOST CURRENT ACTIVE CONTEXT IS ASSIGNING A POWER SUPPLY
AND A UNIBUS ADAPTOR HAS BEEN PUT IN A CABINET
AND THE POSITION IT OCCUPIES IN THE CABINET (ITS NEXUS) IS KNOWN
AND THERE IS SPACE AVAILABLE IN THE CABINET FOR A POWER SUPPLY FOR THAT NEXUS
AND THERE IS AN AVAILABLE POWER SUPPLY
AND THERE IS NO H7101 REGULATOR AVAILABLE

THEN: ADD AN H7101 REGULATOR TO THE ORDER

ASSIGN-POWER-SUPPLY-7

IF: THE MOST CURRENT ACTIVE CONTEXT IS ASSIGNING A POWER SUPPLY
AND A UNIBUS ADAPTOR HAS BEEN PUT IN A CABINET
AND THE POSITION IT OCCUPIES IN THE CABINET (ITS NEXUS) IS KNOWN
AND THERE IS SPACE AVAILABLE IN THE CABINET FOR A POWER SUPPLY FOR THAT NEXUS
AND THERE IS AN AVAILABLE POWER SUPPLY
AND THERE IS AN H7101 REGULATOR AVAILABLE

THEN: PUT THE POWER SUPPLY AND THE REGULATOR IN THE CABINET IN THE AVAILABLE SPACE

Figure 2-5: Sample rules from a single context

with it whose function is to perform the basic (ordinary) actions appropriate in that context. Other

rules associated with the context insure that if one or more of these basic rules are not satisfied

because some required component is not on the order, the component will be added to the order so

that the appropriate basic rules can fire. Still other rules associated with the context handle

exceptional situations; these are typically special cases of the basic rules and fire before (and often

instead of) the basic rules if their conditions are satisfied.

The rules shown in Figure 2-6 complement the sample rules in Figure 2-5; they give an idea of the

kinds of cues that cause R1 to generate a new context and provide a somewhat broader

understanding of how component information can be used to select among competing actions. The

first three rules shown are all associated with contexts that become relevant within the first major

subtask. The first rule checks to see if there are components on the order with incompatible voltage

25

CHECK-VOLTAGE-AND-FREQUENCY-1

IF: THE MOST CURRENT ACTIVE CONTEXT IS CHECKING VOLTAGE AND FREQUENCY
AND THERE IS A COMPONENT THAT REQUIRES ONE VOLTAGE OR FREQUENCY
AND THERE IS ANOTHER COMPONENT THAT REQUIRES A DIFFERENT VOLTAGE OR FREQUENCY

THEN: ENTER THE CONTEXT OF FIXING VOLTAGE OR FREQUENCY MISMATCHES

VERIFY-SBI-AND-MB-DEVICE-ADEQUACY-3

IF: THE MOST CURRENT ACTIVE CONTEXT IS VERIFYING SBI AND MASSBUS DEVICE ADEQUACY
AND THERE ARE MORE THAN TWO MEMORY CONTROLLERS ON THE ORDER

THEN: MARK THE EXTRA CONTROLLERS AS UNSUPPORTED (IE. NOT TO BE CONFIGURED)
AND MAKE A NOTE TO THE SALESPERSON

THAT ONLY TWO MEMORY CONTROLLERS ARE PERMITTED PER SYSTEM

ASSIGN-UB-MODULES-EXCEPT-THOSE-CONNECTING-TO-PANELS-4

IF: THE MOST CURRENT ACTIVE CONTEXT IS ASSIGNING DEVICES TO UNIBUS MODULES
AND THERE IS AN UNASSIGNED DUAL PORT DISK DRIVE
AND THE TYPE OF CONTROLLER IT REQUIRES IS KNOWN
AND THERE ARE TWO SUCH CONTROLLERS NEITHER OF WHICH HAS ANY DEVICES ASSIGNED TO IT
AND THE NUMBER OF DEVICES THAT THESE CONTROLLERS CAN SUPPORT IS KNOWN

THEN: ASSIGN THE DISK DRIVE TO EACH OF THE CONTROLLERS
AND NOTE THAT THE TWO CONTROLLERS HAVE BEEN ASSOCIATED

AND THAT EACH SUPPORTS ONE DEVICE

SELECT-BOX-AND-UB-MODULE-FOR-NEXT-SU-2

IF: THE MOST CURRENT ACTIVE CONTEXT IS SELECTING A BOX AND A MODULE TO PUT IN IT
AND THE NEXT MODULE IN THE OPTIMAL SEQUENCE IS KNOWN
AND THE NUMBER OF SYSTEM UNITS OF SPACE THAT THE MODULE REQUIRES IS KNOWN
AND AT LEAST THAT MUCH SPACE IS AVAILABLE IN SOME BOX
AND THAT BOX DOES NOT CONTAIN MORE MODULES

THAN SOME OTHER BOX ON A DIFFERENT UNIBUS
THEN: TRY TO PUT THAT MODULE IN THAT BOX

PUT-UB-MODULE-6

IF: THE MOST CURRENT ACTIVE CONTEXT IS PUTTING UNIBUS MODULES IN BACKPLANES IN SOME BOX
AND IT HAS BEEN DETERMINED WHICH MODULE TO TRY TO PUT IN A BACKPLANE
AND THAT MODULE IS A MULTIPLEXER TERMINAL INTERFACE
AND IT HAS NOT BEEN ASSOCIATED WITH ANY PANEL SPACE
AND THE TYPE AND NUMBER OF BACKPLANE SLOTS IT REQUIRES IS KNOWN
AND THERE ARE AT LEAST THAT MANY SLOTS AVAILABLE

IN A BACKPLANE OF THE APPROPRIATE TYPE
AND THE CURRENT UNIBUS LOAD ON THAT BACKPLANE IS KNOWN
AND THE POSITION OF THE BACKPLANE IN THE BOX IS KNOWN

THEN: ENTER THE CONTEXT OF VERIFYING PANEL SPACE FOR A MULTIPLEXER

CHECK-FOR-UB-JUMPER-CHANGES-5

IF: THE MOST CURRENT ACTIVE CONTEXT IS CHECKING
FOR UNIBUS JUMPER CABLE CHANGES IN SOME BOX

AND THE BOX IS THE SECOND BOX IN SOME CABINET ON SOME UNIBUS
AND THERE IS AN UNCONFIGURED BOX ASSIGNED TO THAT UNIBUS
AND THE JUMPER CABLE THAT HAS BEEN ASSIGNED TO THE LAST BACKPLANE IN THE BOX

IS NOT A BCIIA-10
AND THERE IS A BCIIA-lO AVAILABLE
AND THE CURRENT LENGTH OF THE UNIBUS IS KNOWN

THEN: MARK THE JUMPER CABLE ASSIGNED TO THE BACKPLANE AS NOT ASSIGNED
ASSIGN THE BCIIA-10 TO THE BACKPLANE
INCREMENT THE CURRENT LENGTH OF THE UNIBUS BY TEN FEET

Figure 2-6: Sample rules from different contexts

26

or frequency requirements; if so, the rule generates the context of fixing the mismatches (which is

done by isolating the set of components of the "wrong" voltage or frequency and replacing them on

the order with components of the right voltage and frequency). The second rule is one of several

rules that makes sure that various system limits are not exceeded; this particular rule is satisfied if

there are more than two memory controllers on the order. The third rule assigns unibus devices to

controllers; it is a special case rule since it deals with the case in which the device being assigned is a

dual port device. The fourth, fifth, and sixth rules are all associated with contexts that become

relevant while the unibus expansion cabinets are being filled. The fourth rule is one of several whose

function is to select the next unibus module to configure and determine what box to put it in. The fifth

rule tests for an exceptional case in the context of putting modules in a backplane; if the module that

is to be put in the backplane is a multiplexer, then the context of verifying that there is panel space

available in the cabinet is generated. The sixth rule checks to make sure that the jumper cable that

connects two backplanes is of the appropriate length; this rule looks for the case in which the cable

has to connect the second box in one cabinet with the first box in another.

2.5. RI 'S USE OF ITS RULES

This subsection first provides some information from 20 sample runs to show how RI's use of its

knowledge varies from order to order. Then the degree of conditionality in the task is analyzed.

Finally, Rl's use of its knowledge across the 20 runs is considered; this provides an indication of how

much of Rl's knowledge is "core" knowledge and how much of it is "exceptional" knowledge.

Each of the first 20 rows in Table 2-2 provide information about Ri's performance on an orderg; the

final row shows the mean performance over the 20 orders. The column headed "Number of

components ordered" shows the number of components that R1 configured. The column headed

"Nuriber of cycles" shows the number of rule firings required to configure these components. The

first number includes the rule firings that generated output; the number in parentheses shows the

number of cycles required excluding output generation. On 18 of the 20 orders, R1 had to generate

only one candidate unibus module configuration. On the other two (orders 2 and 15), it generated

three candidates for each; 281 rule firings were required, on the average, to generate each

unacceptable candidate. The next two columns show the degree to which R1 uses the knowledge it

has available. The first of these columns shows the ratio of the number of distinct rules that fired to

9 The trace of the run that configured one of these orders (order 7) is given in Appendix 1.

27

Order Number of Number of Percent of Percent of Run time in
number components cycles rules used domain rules cpu minutes

ordered used

1 97 1113 (877) .46 .44 3.27
2 99 1864 (1622) .47 .39 3.90
3 102 1083 (829) .45 .42 2.73
4 129 1570 (1249) .53 .51 4.75
5 65 665 (502) .39 .35 1.28
6 64 812 (657) .43 .41 1.48
7 142 1591 (1249) .53 .51 5.20
8 54 613 (476) .38 .35 1.10
9 63 702 (541) .40 .37 1.35

10 73 770 (643) .43 .41 2.13
11 78 928 (743) .43 .40 1.73
12 115 1167 (921) .43 .41 3.07
13 107 1151 (905) .44 .41 2.90
14 78 915 (706) .45 .42 1.80
15 99 1900 (1644) .48 .41 3.80
16 105 1065 (907) .47 .44 2.28
17 59 670 (517) .40 .37 1.23
18 67 768 (592) .42 .37 1.50
19 83 845 (42) .43 .41 1.87
20 84 940 (734) .44 .41 2.13

Mean 88 1056 (847) .44 .41 2.48

Table 2-2: Statistics for individual runs

the total number of rules;10 the other shows the ratio of the number of distinct domain specific rules

that fired to the number of domain specific rules. The ratio of domain specific knowledge used to

general knowledge used is about 2 to 1, which is approximately the ratio of domain specific

knowledge available to general knowledge available. It should be noted that the number of distinct

productions used does not grow directly with the number of cycles. On the average, for the orders

tMat take the smallest number of cycles to configure, each rule is used twice; for the orders that take

the largest number of cycles to configure, each rule is used five times. Only about 40 to 50 percent of

the knowledge that Ri has available is required on any particular order (about 200 domain specific

rules and about 100 general rules). The column that shows run time in cpu minutes includes the time

it takes to generate output. The average amount of time required to generate output is .72 minutes;

10Since the 106 rules that generate output are invoked only after the configuration task has been done (and
after all of the necessary domain knowledge has been used) they are excluded from consideration here and in
Tables 2-3 and 2-4 as well.

28

thus the average run time required to configure an order is 1.76 minutes.1 1 The average working

memory size during a run is about 500 elements. Although some elements remain in working memory

after their usefulness has ended, R1 deletes elements from working memory whenever it is clear that

the information contained in those elements is no longer needed; thus mean working memory size

provides a reasonably good estimate of the amount of information that it is useful to have readily

available.

The fan-in and fan-out of RI's rules provide a measure of the degree of conditionality in the

configuration task. The fan-in of a rule is the number of distinct rules that could fire immediately

before that rule; the fan-out is the number of distinct rules that could fire immediately after the rule.

The task of determining precisely the average fan-in and fan-out of R1 rules is more or less

impossible. Since the elements asserted by a rule ordinarily partially instantiate a large number of

other rules (in many different contexts), in order to determine fan-in and fan-out, one would have to

trace the effects of all possible inputs (orders). It is, however, possible to establish an upper bound on

the fan-in and fan-out of Rl's rules by taking into account the consequences of Ri's use of contexts.

And it is possible to establish a lower bound by determining fan-in and fan-out for a subset of the

possible inputs.

Rl's use of contexts severely limits fan-in and fan-out. Since a production can fire only if it

contains a condition element that matches the most current active context, the productions that can

fire immediately before some production, p, are those that are associated with p's context and those

that assert p's context. The only productions that can fire immediately after p are those that are

associated with p's context or, if p asserts a new context, those that are associated with that new

context. Each context, on the average, has eight productions associated with it and fewer than two

rules assert that context. Thus 10 is an upper bound on average fan-in, and 8 is an upper bound on

average fan-out. The actual average fan-in and fan-out are, of course, considerably less than this.

Since at least some of the rules associated with a context are mutually exclusive and since some have

a special-case/general-case relationship, it is not the case that every rule associated with a context

can fire immediately before and immediately after every other rule in that context.

Table 2-3 shows, for the 20 sample orders, the actual number of rules that, on the average, fired

just before and just after each rule. The first five rows of the table indicate the fan-in and fan-out on

five different runs; the other three rows indicate the fan-in and fan-out when more than one run is

taken into account at one time. Throughout, the fan-in and fan-out are approximately the same. On

the individual runs, fan-in and fan-out range between 1.21 and 1.42; about three-fourths of the rules

have a fan-in equal to 1 and three-fourths of the rules have a fan-out equal to 1 (ie, these rules are

1 1 The 20 sample runs were made on a PDP.10 (model KL).

29

preceded by only one rule and are succeeded by only one rule). As one would expect, as more runs

are taken into account, the fan-in and fan-out increase. When 20 runs are analyzed together, both the

fan-in and fan-out are about 2, and only about half of the rules have fan-in and fan-out equal to 1. A

lower bound on fan-in and fan-out, then, is 2. A significant number of productions fired only once,

and a significant number did not fire on any of the 20 runs; thus there is reason to suspect that the

actual fan-in and fan-out is considerably greater than 2.

Number Percent of Mean Max Percent of Mean Max
of runs rules with fan-in fan-in rules with fan-out fan-out

fan-in = 1 fan-out = 1

1 .73 1.35 6 .74 1.35 5
1 .72 1.40 7 .73 1.41 8
1 .68 1.42 7 .69 1.42 6
1 .85 1.21 4 .84 1.21 4
1 .79 1.27 5 .80 1.28 9
5 .57 1.67 9 .59 1.67 12

10 .49 1.86 9 .53 1.86 12
20 .46 1.98 10 .49 1.98 12

Table 2-3: fan-in and fan-out

If we were to assume that the average fan-in and fan-out of the rules is 3, and that about a third of

the rules have a fan-in of 1 and a third have a fan-out of 1, then the rule network that emerges has the

following characteristics: It has 666 nodes, one for each of the rules (excluding the 106 output

generation rules). Perhaps half of these nodes have a single edge coming into them and/or a single

edge going out; the other nodes have an average of four edges coming in and/or four edges going

out. It should be clear that unless the selection of which edge to follow can be highly constrained, the

cost (in nodes visited) of finding an adequate configuration (an appropriate path through the rule

network) will be enormous. It is in this context that the power of the Match method used by R1 should

become apparent. When R1 can configure a system without backtracking, it finds a single path

through the rule network; this path consists, on the average, of about 800 nodes. When R1 must

backtrack, it visits an additional N nodes, where N is the product of the number of unsuccessful

unibus module sequences it tries (which is rarely more than 2) and the number of nodes that must be

expanded to generate a candidate unibus module configuration (which is rarely more than 300).

Table 2-4 shows the extent to which Rl's knowledge is used on the 20 runs. As the first row in the

table shows, about a third of Ri 's knowledge was not used in any of the sample runs. The bottom row

shows that another third of RI's knowledge was used for every order. This is the core knowledge in

the domain. The use of the other third of Rl's knowledge is fairly evenly distributed along the "core to

exceptional" continuum. I suspect that if I were to perform the same analysis on 200 runs, that the

30

number of unused rules would be very small, but that the distribution of the non-core knowledge

would remain quite even. The fact that so much of the domain knowledge is exceptional is not

particularly surprising and is certainly consistent with the fan-in/fan-out analysis. The rule network is

quite branchy at two-thirds of its nodes because within each context a wide variety of often mutually

exclusive alternatives arise. But a third of the nodes in the network are connected by a single edge;

the state transitions represented by these edges are presumably actions that are necessary in order to

configure any system.

Number Percent of rules used Percent of domain rules
of runs on exactly N runs used on exactly N runs

0 31.9 34.9
1 5.4 5.9
2 6.3 5.0
3 2.4 3.2
4 3.3 3.6
5 3.3 3.4
6 .9 .9
7 2.2 2.0
8 2.4 2.7
9 1.0 .7

10 .5 .7
11 .7 .9
12 .7 1.1
13 .5 .7
14 .7 .9
15 .6 .9
16 .1 .2
17 .3 .5
18 2.5 2.9
19 2.4 1.6
20 312 27.3

100.0 100.0

Table 2-4: Knowledge use over 20 sample orders

2.6. DESIGN AND IMPLEMENTATION HISTORY

Up to this point in section 2, the focus has been on how R1 exploits the many constraints imposed

by the configuration task to minimize (indeed, almost eliminate) the search required to perform the

task. This subsection focuses on the engineering issues that underly Rl's performance. R1 evolved.

In a period of less than a year, it went from an idea, to a demonstration system that had most of the

basic knowledge required in the domain but lacked the ability to deal with the intricacies of unusual

orders, to a system that possesses true expertise. Its development parallels, in many respects, the

development of the several domain-specific systems engineered by Stanford University's Heuristic

31

Programming Project [Feigenbaum 77).

RI's implementation history divides quite naturally into two stages. During the first stage, which

began in December of 1978 and lasted for about four months, I spent five or six days being tutored in

the basics of VAX system configuration, read and reread the two manuals that describe many of the

constraints on how VAX systems can be configured, and implemented an initial version of Ri

(consisting of fewer than 200 domain rules) that could configure the simplest of orders correctly, but

made numerous mistakes when it tried to tackle more complex orders. 12 The second stage, which

lasted for another four months, was spent in asking experts in the VAX configuration task to examine

Ri's output, point out Rl's mistakes, and indicate what knowledge R1 was lacking. R1 was

sufficiently ignorant that finding mistakes was no problem. During this stage, Rl's domain knowledge

almost tripled.

During the first stage, the initial problem was extracting knowledge from human experts in the

absence of a system that could display errorful behavior (ie, in the absence of a system that could be

refined). It was clear, almost from the start, that the experts had a clear idea of (ie, could articulate)

the structure of the task. There are a basic set of subtasks that must be performed when configuring

any order; the relationship among these subtasks is easily described by the experts at an abstract

level. It soon became clear that within a subtask, the decision about what to do was almost invariably

exception driven. Put another way, the manner in which the configuration task is talked about has the

flavor of "When you're performing subtask x, do y, unless z". Thus the mode of extracting

information that I adopted was to present a subtask. ask what sorts of actions might be appropriate,

and then, given an action, push for the exceptional cases. This maps nicely into a rule-based

representation since there is some ordinary case rule, typically with little information required except

knowledge of a few values of germane components, and then a collection of other rules that are

special cases of that ordinary case rule. The additional conditions in these special case rules look for

the "unless features" that signal an exceptional situation.

The problem with this approach to knowledge extraction is that humans do not seem to be

particularly good at producing the exceptional cases on demand. I naively assumed, after

implementing the basic system, that I had managed to extract most of the knowledge relevant to the

configuration task. But as soon as the initial system was able to process orders, it became apparent

that the knowledge was nowhere near adequate. Experts would look at the output, look at me

strangely, and ask how R I could have done that. As we discussed the problem, it became apparent

that crucial conditions had simply not emerged during the initia! knowledge extraction process. By

and large, these conditions were not esoteric; as people explained to me why particular conditions

1 2 During this firs(stage, RI's name was XCON.

32

had to hold, it usually seemed "obvious". As I tried to extract knowledge, I had pushed hard to

determine if any relevant factors were being ignored, and typically I was assured that all of the

relevant knowledge was out on the table. Perhaps I just don't know how to push. But it is more likely,

I think, that configurers store their knowledge in a way that makes it extremely difficult for them to

access conditions (constraints) given only actions.

Once the need for significant additions to Rl's domain knowledge became apparent, the

rule-based nature of the representation again demonstrated its worth. The second stage was

characterized by what could be called "rule splitting" (complemented occassionally by what might be

called "context splitting"). Given an inappropriate action on Ri's part, it was quite easy (since the

context in which the inappropriate action occurred was usually obvious) to find the offending rule. I

would then simply ask the expert what he would have done differently and how he would have known

to do that different thing. Sometimes a known feature of the situation could be used to signal the

different action. More often, though, there was additional information that R1 did not know about that

had to be taken into account. In the first case, all that was required to make Rl's performance

acceptable was to copy the offending rule and add a condition to it. In the second case, not only did

the one rule become two, but information gathering rules had to be added to production memory. In

both cases the refinement process was straightforward. When there were negative side-effects from

a change, the effects were usually confined to the rules associated with the changed rule's context.

But since RI's rules are mostly driven by positive features of a situation, such negative interactions

were rare. Thus encoding knowledge in the form of rules appears to have facilitated the refinement

process.

3. RESULTS
RI has achieved a certain success as a configurer, but hopefully it has also contributed something

to our understanding of domain-specific systems. This section briefly characterizes Rl's current level

of expertise. Then the features of R1 that have an interest beyond the configuration domain are

isolated.

During October and November of 1979, R1 was involved in a formal validation procedure. The

purpose of the validation stage was to determine whether R1 was expert enough in the configuration

task to be used in place of human experts. Over the two month period, R1 was given 50 orders to

configure. A team of six experts examined Ri's output, spending from one to two hours on each

order. In the course of examining the configurations, 12 pieces of errorful knowledge were

uncovered. The rules responsible for the errors were modified and the orders were resubmitted to R1

and were all configured correctly. At the end of this validation stage, R1 was judged to be expert

enough to be used in place of human experts. R1 then began to be integrated into the actual

33

manufacturing environment; various processes were put in place tc - 'ble it to be used on a regular

basis and to control the additions of new product descriptions to its data base and the additions or

modifications to its rules implied by these new products. R1 is currently used as part of the regular

manufacturing process to produce configuration descriptions of each VAX system before it is

assembled. These descriptions are then used by the technicians as they physically assemble the

systems. Since the amount of time that ellapses between the placing of an order and assembly can be

as much as six to nine months, it is important that each order be screened as soon as it is received to

make sure that it is configurable (ie, does not required additional components in order to be a

functional system). Thus R1 is also beginning to be used to configure each order booked at several

regional field offices on the day it is booked. At the moment, these two uses of R1 are independent,

but the expectation is that they will be merged, at some point in the future, to form the basis for a

coherent order processing environment. Since the end of the validation stage, R1 has been run on

over 300 orders and its output has been examined by experts; all but nine of the configurations that it

has generated have been acceptable, and the rules responsible for the unacceptable configurations

were easily fixed.

An important remaining question is whether anything has been learned from building R1 that can

help guide the design of expert systems in other domains. I think that there are four ideas that have

emerged that can provide some assistance:

" There are real-world domains in which Match can be used.

" There are real-world domains with sufficient structure to make it possible to recognize
what to do at any time on the basis of a handful of situational cues.

" There are real-world domains in which production system languages can be used to
advantage.

" The production system language, OPS4, is an appropriate tool for the construction of

domain-specific systems.

I will consider each of these ideas in turn.

Because Match is a powerful method, it should be considered for all tasks that can support its use.

In order to support Match, a task must be decomposable; it must involve moving from an initial state,

through a number of intermediate states, to some desired state. If there are several alternative

desirea states, they must be equally acceptable. It must be possible, at any intermediate state, to

determine whether that state is on a solution path: this implies that whatever information is required in

order to determine whether a state is on a solution path can he available when it is needed. Even if a

task does not meet these requirements. Match may be able to be used in conjunction with other, less

powerful, methods. In the configuration task, the desired states (acceptable configurations) are not

34

all equally acceptable since unibus modules can be configured more or less optimally. Nevertheless,

Match can be used as a stand-alone method to configure everything except unibus modules and as

an embedded method to generate candidate unibus module configurations.

The fact that Match can be used for some task does not imply that its use is warranted. Match may

be usable, but impractical. How practical Match is, depends, at least in part, on how difficult it is to

order the intermediate states in such a way that no state can be reached before all of the information

required to determine if that state is on a solution path has become available. In task domains with

little structure, this ordering may be almost impossible to achieve since each state would have to test

explicitly for the availability of that information. In task domains with considerable structure, on the

other hand, the ordering may be quite easy to achieve since the fact that some other state or set of

states have already been visited may guarantee the availability of much of that information and thus

only a few explicit tests would be required.

Production system languages (or at least a subset of them) have two properties which make them

particularly well-suited for domains like the configuration domain: (1) they make it easy to implement

recognition-driven systems, and (2) they make it easy to implement systems incrementally. It is

difficult in the case of the configuration task to specify in advance what particular pieces of

component information will be relevant at any point in the configuration process. Since component

information has no structuring principle, it is, at least conceptually, just a big set of information and is

most naturally stored in a single global memory. Because a production system language provides

such a memory, it is unnecessary to determine a priori what particular features of situations need to

be attended to. Rather, each rule can simply watch for a set of features it recognizes. A production

system language also makes it easy to incrementally build up a system's expertise. As we have seen,

Rl's shortcoming during its apprenticeship stage was that it was insufficiently discriminating. If a

system's knowledge is represented as a set of rules that associate actions with the conditions under

which they are appropriate, then the unit of representation is one which enables this shortcoming to

be easily overcome. Given a criticism of some aspect of the configuration by an expert, all that was

necessary in order to refine Ri 's knowledge was to find the offending rule, ask the expert to point out

the problem with the condition elements in the rule, and then either modify the rule or split it into two

rules that would discriminate between two previously undifferentiated states.

Though various production system languages could have been used to implement R1, OPS4 has

three characteristics that make it a particularly appropriate vehicle. First, OPS4 is an efficient

implementation of a recognize-act architecture; it uses techniques that make cycle time essentially

independent of the size of both production memory and working memory. Second, it provides a

special case conflict resolution strategy which ma.kes it easy to deal with knowledge of exceptional

situations. Third, OPS4 is a fairly powerful language for expressing patterns. This makes it easy to

35

describe a wide variety of different sorts of constraints. There is, however, a drawback: an OPS4 rule

looks only remotely like its English equivalent. 13 As a consequence, people for whom OPS4 is not a

second language require a human translator in order to understand the rules. This makes the
refinement process less straightforward than it otherwise might be.

CONCLUDING REMARKS
RI has proven itself to be a highly competent configurer of VAX-1 1/780 systems. The

configurations that it produces are consistently adequate, and the information that it makes available
to the technicians who physically assemble systems is far more detailed than that produced by the
humans who do the task. In addition to being used to provide guidance to the technicians, R1 also

screens orders up front to insure that a customer will not be unpleasantly surprised, sometime after
placing his order, to hear that it is unconfigurable. The function that R1 currently serves is a valuable

one, and once a site-specific floor layout capability has been added, R1 will be fully competent in its
little domain.

There are, however, some obvious ways in which to enlarge its domain to make it a more helpful
system. Work has already begun on augmenting Rl's knowledge to enable it to configure other

computer systems manufactured by DEC. In addition, we plan to augment its knowledge so that it will

be able to help with the scheduling of system delivery dates. We also plan to augment Rl's
knowledge so that it will be able to provide interactive assistance to a customer or salesperson that

will allow him, if he wishes, to specify some of the capabilities of the system he wants and let RI select
the set of components that will provide those capabilities. Ultimately we hope to develop a
salesperson's assistant, an R1 that can help a customer identify the system that best suits his needs.

ACKNOWLEDGEMENTS
Many people have provided help in various forms. Jon Bentley, Scott Fahlman, Charles Forgy,

Betsy Herk, Jill Larkin, Allen Newell, Paul Rosenbloom, and Mike Rychener gave me considerable

encouragement and many valuable ideas. Dave Barstow, Bruce Buchanan, Bob Englemore, Penny
Nii, Ted Shortliffe, and Mark Stefik contributed their knowledge engineering expertise. Finally, Jim

Baratz, Alan Belancik, Dick Caruso, Sam Fuller, Linda Marshall, Kent McNaughton, Vaidis Mongirdas,

Dennis O'Connor, and Mike Powell, all of whom are at DEC, assisted in bringing R1 up to industry

standards.

1 3 The OPS4 rules that are rendered in English in Figures 2-5 and 2-6 are shown in Appendix 3.

36

REFERENCES

[Amarel 77] Amarel, S., J. S. Brown, B. Buchanan, P. Hart, C. Kulikowski, W. Martin, and
H. Pople.
Reports of panel on applications of artificial intelligence.
In Proceedings of the Fifth International Joint Conference on Artificial Intelligence,

pages 994-1006. MIT, 1977.

(Davis 77] Davis, R., B. Buchanan, and E. Shortliffe.
Production rules as a representation for a knowledge-based consultation program.
Artificial Intelligence 8(1):15-45, 1977.

[Feigenbaum 77] Feigenbaum, E. A.
The art of artificial intelligence.
In Proceedings of the Fifth International Joint Conference on Artificial Intelligence,

pages 1014-1029. MIT, 1977.

[Forgy 77] Forgy, C. L. and J. McDermott.
OPS, A domain-independent production system language.
In Proceedings of the Fifth International Joint Conference on Artificial Intelligence,

pages 933-939. MIT, 1977.

[Forgy 79] Forgy, C. L.
The OPS4 user's manual.
Technical Report, Carnegie-Mellon University, Department of Computer Science,

1979.

[Forgy 80] Forgy, C. L.
RETE: A fast algorithm for the many pattern/many object pattern match problem.
Technical Report, Carnegie-Mellon University, Department of Computer Science,

1980.

[McDermott 78] McDermott, J. and C. L. Forgy.
Production system conflict resolution strategies.
In D. A. Waterman and F. Hayes-Roth (editors), Pattern-Directed Inference

Systems, pages 177-199. Academic Press, 1978.

[Newell 63] Newell, A., J. C. Shaw, and H. A. Simon.
Empirical explorations with the Logic Theory Machine.
In E. A. Feigenbaum and J. Feldman (editors), Computers and Thought, pages

109-133. McGraw-Hill, 1963.

[Newell 69] Newell, A.
Heuristic programming: ill-structured problems.
In J. S. Aronofsky (editor), Progress in Operations Research, pages 361-414. John

Wiley and Sons, 1969.

[Newell 77] Newell, A.
Knowledgo representation aspects of production systems.
In Proceedings of the Fifth International Joint Conference on Artificial Intelligence,

pages 987-988. MIT, 1977.

[Nilsoion 80] Nilsson, N.

37

Principles of Artificial Intelligence.
Tioga Publishing Co., 1980.

[Waterman 78] Waterman, D. A. and F. Hayes-Roth (editors).
Pattern-Directed Inference Systems.
Academic Press, 1978.

38

APPENDIX 1
This appendix shows a sample order and the trace (at the context level) of the run that configured

the order. The number preceding each context name is the cycle on which that context was entered.

A context that is invoked by a rule in another context is indented in order to show the invoking context

(ie, to make the relationships among contexts apparent). Appendix 2 contains the output that R1

produced for this sample order.

COMPONENTS ORDERED:
1 SV-AXHHA-LA [packaged system]
1 FP780-AA [floating point accelerator]
1 OW780-AA [unibus adaptor]
1 BAll-KE (unibus expansion cabinet box]
6 MS780-DC [memory]
1 MS780-CA [memory controller]
I Hg6O2-HA [cpu expansion cabinet]
1 H7111-A [clock battery backup]
1 H7112-A [memory battery backup]
1 REPO5-AA [single port disk drive]
4 RPO-BA [dual port disk drive)
1 TEE16-AE (tape drive with formatter]
2 TE16-AE [tape drive]
8 RKO7-EA (single port disk drive]
1 DR11-B [direct memory access interface)
1 LPI-CA [line printer]
1 DZ11-F [multiplexer with panel)
1 DZ11-B [multiplexer]
2 LA36-CE [hard copy terminal]

1. MAJOR-SUBTASK-TRANSITION
2. SET-UP
3. UNBUNDLE-COMPONENTS

63. NOTE-CUSTOMER-GENERATED-EXCEPTIONS
65. NOTE-UNSUPPORTED-COMPONENTS
67. CHECK-VOLTAGE-AND-FREQUENCY

104. CHECK-FOR-TYPE-OR-CLASS-CHANGES
110. VERIFY-SBI-AND-MB-DEVICE-ADEQUACY
111. COUNT-SBI-MODULES-AND-MB-DEVICES
126. GET-NUMBER-OF-BYTES-AND-COUNT-CONTROLLERS
137. FIND-UBA-MBA-CAPACITY-AND-USE
146. VERIFY-MEMORY-ADEQUACY
146. PARTITION-MEMORY
160. ASSIGN-UB-MODULES-EXCEPT-THOSE-CONNECTING-TO-PANELS
177. VERIFY-UB-MODULES-FOR-DEVICES-CONNECTING-TO-PANELS
178. FIND-ATTRIBUTE-OF-TYPE-IN-SYSTEM
170. VERIFY-COMPONENT-OF-SYSTEM
207. NOTE-POSSIBLY-FORGOTTEN-COMPONENTS
213. CHECK-FOR-MISSING-ESSENTIAL-COMPONENTS
215. MAJOR-SUBTASK-TRANSITION
216. DELETE-UNNEEDED-ELEMENTS-FROM-WM
236. FILL-CPU-OR-CPUX-CABINET
240. ADD-UBAS
248. ASSIGN-POWER-SUPPLY
261. ADO-MBAS
262. DISTRIBUTE-MB-DEVICES
260. ASSIGN-SLAVES-TO-MASTERS
269. ASSIGN-POWER-SUPPLY
272. FILL-MEMORY-SLOTS
278. SHIFT-BOARDS
298. ADD-MEMORY-MODULE-SIMULATORS
305. ASSIGN-POWER-SUPPLY
312. FILL-CPU-SLOTS
318. ASSIGN-POWER-SUPPLY

39

322. ADD-NECESSARY-SIMULATORS
326. DELETE-TEMPLATES
340. DELETE-UNNEEDED-ELEMENTS-FROM-NM
353. FILL-CPU-OR-CPUX-CABINET
366. ADD-fleAS
359. ASSIGN-POWER-SUPPLY
362. ADD-UBAS
364. FILL-MEMORY-SLOTS
309. SHIFT-BOARDS
389. ADD-MEMORY-MODULE-SIMULATORS
396. ASSIGN-POWER-SUPPLY
399. TERMINATE-Sel
402. ADD-NECESSARY-SIMULATORS
406. DELETE-TEMPLATES
416. NAJOR-SUBTASK-TRANSITION
416. SET-FILL-OE
417. GENERATE-OPTIMAL-SEQUENCE
436. ASSIGN-UBAS-TO-BOXES-TO-CABINETS
438. ASSIGN-UBAS-TO-BOXES
441. DISTRIBUTE-BOXES-AMONG-CABINETS
442. SET-UP-FOR-BOX-ASSIGNMENTS,
440. ASSIGN-BOXES-TO-CABINETS
462. COMPUTE-DISTANCES-FROM-U8AS-TO-6OXES
468. SET-SEQUENCING-MODE
462. FILL-BOXES
465. FILL-HALF-BOXES
466. SELECT-BOX-AND-UB-MODULE-FOR-NEXT-SU
470. ASSIGN-BACKPLANE-TO-BOX
474. GENERATE-SLOT-TEMPLATES
478. PUT-UB-MODULE
482. LEAVE-BACKPLANE
485. AUGMENT-UB-LENGTH
488. GET-UB-JUMPER
491. CHECK-NEED-FOR-UB-REPEATER
497. SELECT-BOX-AND-UB-MODULE-FOR-NEXT-SU
601. ASSIGN-BACKPLANE-TO-BOX
606. GENERATE-SLOT-TEMPLATES
510. PUT-UB-MODULE
618. ADD-SUBOPTIMAL-UB-MODULE
527. LEAVE-BACKPLANE
640. AUGMENT-UB-LENGTH
643. GET-UB-JUMPER
547. CHECK-NEED-FOR-UB-REPEATER
668. LEAVE-HALF-BOX
659. CHECK-FOR-Lie-JUMPER-CHANGES
661. CHECK-TERMINATION-CONDITIONS
568. SELECT-BOA -AND-UB-MOOULE-FOR-NEXT-SU
671. ASSIGN-BACKPLANE-TO-BOX
576. GENERATE-SLOT-TEMPLATES
680. PUT-yB-MODULE
681. ASSOCIATE-MULTI PLEXER-WI TN-PANEL-SLOT
690. ASSOCIATE-MULTIPLEXER-WITH-PANEL-SLOT
598. ASSOCIATE-MULTIPLEXER-WITH-PANEL-SLOT
604. ADO-SUBOPTIMAL-UB-MODULE
608. ASSOCIATE-MULTIPLEXER-WITH-PANEL-SLOT
616. ADD-SUBOPTIMAL-UB-MODULE
617. LEAVE-BACKPLANE
626. AUGMENT-yB-LENGTH
629. GET-yB-JUMPER
633. CHECK-NEED-FOR-UB-REPEATER
643. LEAVE-HALF-BOX
644. CIIECK-FOR-UB-JUMPER-CHANGES
646. CHECK-TERMINATION-CONDITIONS
657. SELECT-BOX -AND-UB-MODULC-FOR-NEXT-SU
660. ASSIGN-BACKPLANE-TO-BOX
663. GENERATE-SLOT-TEMPLATES
667. PUT-Lie-MODULE
668. ASSOCIATE-MULTIPLEXER-WITH-PANEL-SLOT
677. ASSOCIATE-MULTIPLEXER-WITH-PANEL-SLOT
690. LEAVE-SACKPLANE
711. AUGMENT-UB-LENGTH
714. GET-Ua3-JUMPER
718. CHECK-NEED-FOR-UB-REPEATER

40

732. LEAVE-HALF-BOX
733. CHECK- FOR-UB-JUMPER-CHANGES
735. CHECK-TERMINATION-CONDITIONS
738. ASSIGN-UB-JUMPER-CABLES-TO-BOX
749. LEAVE-HALF-BOX
780. CHECK-FOR-UB-JUMPER-CHANGES
762. CHECK-TERMINATION-CONDITIONS
766. ASSIGN-UB-JUMPER-CABLES-TO-BOX
769. ACCEPT-IJNIBUS-CONFIGURATION
832. 1MAJOR-SUBTASK-TRANSITION
833. ASSIGN-TERMINALS-TO-LINES
834. PUT-PANELS-IN-UBX-CABINET
848. MAKE-TERMINAL-ASSIGNMENTS
864. MAJOR-SUBTASK-TRANSITION
888. LAY-OUT-SYSTEM
867. FIND-FLOOR-RANKINGS
882. DETERMINE-FLOOR-POSITIONS
88. DETERMINE-FLOOR-POSITIONS-OF-CABINETS
893. DETERMINE-FLOOR-POSITIONSOF-DEVICES
900. DETERMINE-FLOOR-POSITIONS-OF-SLAVES
906. DETERMINE-FLOOR-POSITIONS-OF-DEVZCES
920. DETERMINE-FLOOR-POSITIONSOF-DEVICES
934. DETERMINE-FLOOR-POSITIONSOF-DEVICES
942. DETERMINE-FLOOR-POSITIONS-OF-DEVICES
973. MAJOR-SUBTASK-TRANSITION
974. COMPUTE-CABLE-LENGTHS
1021. FIND-LENGTHS-OF-CABLES-ON-ORDER
1135. ASSIGN-CABLES
1179. FIND-LENGTHS-OF-CABLES-ON-ORDER
1183. FIND-LENGTHS-OF-CABLES-ON-ORDER
1187. FIND-LENGTHS-OF-CABLES-ON-ORDER
1192. NOTE-POSSIBLY-FORGOTTEN-COMPONENTS
1198. GENERATE-COMPONENT-NUMBERS-FOR-CABLES
1248. GENERATE-OUTPUT

41

APPENDIX 2
This appendix contains the output generated by R1 on the sample run shown in Appendix 1. The

information on this page provides an overview of the configured system. The next two pages give

information about the composition of the system; note that bundles are "exploded" in order to show

their constituent components. The remaining pages of Appendix 2 display the spatial relationships

among various subsets of the components in more detail.

DEC-NUMBER VO-7 12-1-79

CABINET LAYOUT COMPONENTS ORDERED

-----------------..----------..----------..----------..----------..---------- I1 SV-AAX HAA-L
011780-CA* H9602-HAO 1 H9602-OF I TE16-AEO TE16-AE* TE16-AEO I LA36-CE

1 070-1577-02
1 QEOO1-AV

BA'.-KEI BAll-KE
U8A 1 1 DR1I-B

I DW780-AA
----------- 1 DZ11-B
CONSOLE I 1DZ11-F
LA36-CE TM03-FA FP780-AA

IBA11-KE* IH------ 1 17111-A
UBA 0 1 H9602-HA
--- - 2 LA36-CE

1 LP11-CA
1 MS780-CA

-----------.---- -------- ---- - -6 MS780-DC
I REP06-AA
8 RKO7-EA
4 RPO-BA
2 TE16-AE
1 TEE16-AE

011780-CAO H9602-HAO BOX I (CABINET 1 BOX 2 (CABINET 1

F I 0 MS780-CAO D R MS780-CAO R
P W 332B8KB W HI 3328 KB H4
7 7 MS780-DC 7 7 MS780-DC 7
a 8 MS780-DC 8 8 MS780-DC 8
0 0 MS780-DC 0 0 MS780-DC 0

MS780-DA MS780-DA END 19
01 0 1 18

KA780-AA* 17
16
16

-------------. -. ---------------. -.--------------- 14 LP11
KC780-AA H7112-A 13 DZII-D
------------------------------- ----------------- 12 DZ11-D*

IN 11

END 9 OUT 9------
FREE STANDING OPTIONS 8 DZ1-B* 8-

7 DZ11-B* 7------
-------- IN 6 6-

5 -----
RPO-AAO RP05-BA RKO7-EAO LA36-CEO LP14-CA OUT 4 4 RK6110

3-.-- 3
1 4 8 2 1 2---- 2

IN I DR2l IN 1
------.-- ----.---- .-------- -- ----- -. -------- --------------- ---------------

42

COMPONENTS ORDERED
I BAI-KE

1 BA11-KEe

1 BCIIA-lO
I DR11-B

1 DR11
1 070-08329-00

1 0W780-AA
1 DW780
1 H7100-A

I DZ11-B
1 BCO6V-16
1 DZ11-B8

IDZ11-F
1 DZ1-C

1 DZ11-D
1 BCO8S-15
1 DZ11-DO

1 H317-F
1 DZ11-D

1 BCOSS-15
I DZI1-D*

I FP780-AA
1 FP780-AA*
1 H7100-A

I H7111-A
I H9602-HA

I H9802-HAO
6 017-00087-03

2 LA36-CE
1 BCO5F-16
1 LA36-CEO

I LP11-CA
1 LP11
I LP14-CA
1 070-11212-25

1 MS780-CA
1 H7100-A
1 H7102
1 H7103
1 MS780-CAO
1 MS780-DA

8 MS780-DC
I REPO-AA

1 BC06S-25
1 RH780-AA

1 H7100-A
1 RH780

1 RPO5-AA
1 BC06S-03
1 RPO-AAO

8 RK07-EA
1 070-12292-08
1 RKO7-EAO

4 RPO-BA
2 BC06S-03
1 RP05-BAO

I SV-AXNHA-LA
1 LA36-CE

1 BCO5F-15
1 LA36-CEO

1 070-15777-02
1 H9602-DA

1 BAI-KE
1 BA11-KEO
1 BCIIA-10

3 SC05L-1
1 DZ11-A

I DZI1-B
1 sCo6w-1
I DZI-84

I H317-E
8 6727
1 H9602-DF
1 M9014
1 M9302

43

1 070-11164
1 011780-CA

I DW780
1 H7111-A
1 KA780-AA

2 H7100-A
1 H7101
1 KA780-AA

1 KC780-AA
1 M9043
1 MS780-CA

1 H7100-A
1 H7102
1 H7103
1 MS780-CAO
1 MS780-DA

1 011780-CA*
1 RKO7-EA

1 070-12292-08
1 RKO7-EAO

I RK711-EA
1 070-12292-26
1 RKO7-EAO
1 RK611

3 6727
1 M9202
1 070-12412-00
1 RK6110

I QEOO1-AV
2 TE16-AE

3 BCO6R-IO
1 TE16-AE*

1 TEE16-AE
3 BCO8R-20
1 RH7B0-AA

1 H7100-A
1 RH780

1 TEI-AE
3 BCO6R-10
I TE16-AE*

1 TMO3mFA
3 BCOOR-lO
1 TMO3-FAO

SUBSTITUTIONS
NONE

COMPONENTS ADDED
1 H7101
1 M9014
I M9202
1 M9302
1 070-11628

THE FOLLOWING COMPONENTS WERE NOT CONFIGURED
2 RKO7-EA* POSSIBLY-FORGOTTEN-PREREQUISTE DISK-DRIVE CONTROLLER)
1 H7111-A NOT-NEEDED
I H7100-A NOT-NEEDED
6 BCO6R-10 NOT-NEEDED
2 070-12292-08 NOT-NEEDED
1 BCO5F-15 NOT-NEEDED
2 BC11A-1O NOT-NEEDED)

POSSIBLY FORGOTTEN COMPONENTS
3 BCOL-16 TO CONNECT USA 0 TO BOX 1 OF CABINET I
1 RK6110 TO SUPPORT 2 UNUSED DISK-DRIVE

UNUSED CAPACITY
THE MEMORY CONTROLLER (MS78O-CA) IN THE CPUX CABINET COULD SUPPORT 768 K BYTES MORE MEMORY
THE MEMORY CONTROLLEI (MS780-CA) IN THE CPU CABINET COULD SUPPORT 768 K BYTES MORE MEMORY
OZI1-O0 I IN BOX 2 OF CA3INET 1 COULD SUPPORT 7 MORE MA20 LINES (THROUGH PANEL 2)
DZII-DO 2 IN BOX 2 OF CAPINET 1 COULD SUPPORT 7 MORE MA20 LINES (THROUGH PANEL 2)
DZ11-B5 2 IN BOX 1 OF CABINET I IS UNUSED (IT CAN SUPPORT 8 EIA LINES (THROUGH PANEL 1))
DZ1-U* 1 IN BOX I OF CABINET I IS UNUSED (IT CAN SUPPORT 8 EIA LINES (THROUGH PANEL 1))
MBA 0 COULD SUPPORT 2 MORE MB-DEVICES AND ITS 1 MASTER TAPE DRIVES COULD SUPPORT 6 MORE SLAVES
MBA I COULD SUPPORT 4 MORE MB-DEVICES

THE OPTIMAL ORDERING OF THE MODULES IS (DR11 RK611e DZ11-B* DZ11-30 DZ11-0 DZI1-Do LP1l)
THE ORDERING ON UBA 0 IS (OR1I DZII-Be DZI-BO)
THE ORDERING ON USA I IS (RK611" DZI1-00 DZ11-00 LP1I)

44

FLOOR-PLAN (TOP VIEW)
--------- ---

LA38-CE* 011780-CA* Hg5o2-HA* HgS02-DF
CONSOLE CPU-CABINET CPUX-CABINET 1 UBX-CABINET 1

--

---~----------------------------------- ------------------- ------------------------

TE16-AE* (AND TMO3-FAO) TE16-AEO TE18 AE RP05-BAO
MB-DEVICE 5 SLAVE 1 SLAVE 2 MB-DEVICE 0
NBA 0 MB-DEVICE 5 MB-DEVICE 5 NBA 0

NBA 0 MBA 0 MB-DEVICE 0
NBA I

-------------------- ------------------------ ------------------ft----- ------------------------

-------------------- ---- -- --- -------------------------
RP05-BA I RPO5-BA* RP0 5-BA' RP05-AA*

MB-DEVICE 1 MB-DEVICE 2 MB-DEVICE 3 MB-DEVICE 4
MBAO0 MBAO0 MBA 0 NAG0
MB-DEVICE 1 MB-DEVICE 2 MB-DEVICE 3
NSAI MBA 1 MBA I

--- ------------------------ -------------------------

----------- ---------------- ---------------- ---------------- --------------- ----------------
RK07-EAO 0 RK07-EA* 1 RK07-EAO 2 RK07-EA* 3 RKO7-EA* 4 RK07-EAO 5
RKS110 I RKS11 I RK610 1 RK811 I RK6110 I RK6110 1
Box 2 Box 2 BOX 2 BOX 2 BOX 2 Box 2
CABINET 1 CABINET 1 CABINET 1 CABINET 1 CABINET I CABINET 1
UBA I UBA I UBA I UBAlI UBAlI UBAlI

----------- ---------------- ---------------- --------------ft----------------- ----------------

------------ ---------------- ------------- ------------- ---------------------------
RK07-EAO 6 RK07-EA* 7 LA36-CEO 0 LA36-CE' 1 LP14-CA
RK611' 1 RK6110 1 SLOT B SLOT 0 LPI1 I
BOX 2 BOX 2 PANEL 2 PANEL 2 BOX 2
CABINET 1 CABINET 1 CABINET 1 CABINET 1 CABINET 1
UUAlI IA I UBA I UBA I UBAlI

45

CABLE ASSIGNMENTS

BCOBR-20 I FROM MB-DEVICE 5 (TE16-AE*) ON MBA 0 TO ITS TMO3-FA*
LENGTH: 20.0 (ESTIMATED-LENGTH-REQUIRED: 10.0)

BCOBR-20 2 FROM MB-DEVICE 6 (TE10-AE*) ON MBA 0 TO ITS TM03-FA*
LENGTH: 20.0 (ESTIMATED-LENGTH-REQUIRED: 10.0)

BCO6R-20 3 FROM MB-DEVICE 5 (TE16-AE*) ON MBA 0 TO ITS TM03-FA*
LENGTH: 20.0 (ESTIMATED-LENGTH-REQUIRED: 10.0)

BCOOR-10 I FROM MB-DEVICE 5 SLAVE 1 (TE16-AEO) ON MBA 0 TO SLAVE 2 (TE18-AEO)
LENGTH: 10.0 (ESTIMATED-LENGTH-REQUIRED: 9.0)

BCO8R-10 2 FROM MB-DEVICE 5 SLAVE 1 (TE16-AEO) ON MBA 0 TO SLAVE 2 (TE16-AEO)
LENGTH: 10.0 (ESTIMATED-LENGTH-REQUIRED: 9.0)

COOR-1O 3 FROM MB-DEVICE 5 SLAVE 1 (TE16-AEO) ON MBA 0 TO SLAVE 2 (TE1-AEO)
LENGTH: 10.0 (ESTIMATED-LENGTH-REQUIRED: 0.0)

BCOOR-10 4 FROM MB-DEVICE 5 (TE16-AEO) ON MBA 0 TO SLAVE 1 (TE1-AEO)
LENGTH: 10.0 (ESTIMATED-LENGTH-REQUIRED: 9.0)

BCOSR-10 6 FROM MB-DEVICE 5 (TE16-AE*) ON MBA 0 TO SLAVE 1 (TE16-AEO)
LENGTH: 10.0 (ESTIMATED-LENGTH-REQUIRED: 9.0)

BCOOR-lO 8 FROM MB-DEVICE 5 (TE16-AEO) ON MBA 0 TO SLAVE 1 (TE16-AEO)
LENGTH: 10.0 (ESTIMATED-LENGTH-REQUIRED: 9.0)

BCOSL-15 1 FROM UBA 1 TO BOX 2 OF CABINET 1
LENGTH: 15.0 (ESTIMATED-LENGTH-REQUIRED: 25.0)

BCOSL-15 2 FROM UBA 1 TO BOX 2 OF CABINET 1
LENGTH: 16.0 (ESTIMATED-LENGTH-REQUIRED: 25.0)

BCOSL-15 3 FROM UBA I TO BOX 2 OF CABINET 1
LENGTH: 15.0 (ESTIMATED-LENGTH-REQUIRED: 25.0)

070-12292-25 1 FROM RK611* 1 IN BOX 2 OF CABINET 1 TO RKO7-EAO 0
LENGTH: 25.0 (ESTIMATED-LENGTH-REQUIRED: 36.6)

070-12292-08 1 FROM RKO7-EA* 6 ON RK6110 1 IN BOX 2 OF CABINET 1 TO RKO7-EAO 7
LENGTH: 8.0 (ESTIMATED-LENGTH-REQUIRED: 8.0)

070-12292-08 2 FROM RKO7-EA* 5 ON RK6110 1 IN BOX 2 OF CABINET 1 TO RKO7-EA* 8
LENGTH: 8.0 (ESTIMATED-LENGTH-REQUIRED: 8.0)

070-12292-08 3 FROM RKO7-EA* 4 ON RK611* 1 IN BOX 2 OF CABINET 1 TO RKO7-EAO 6
LENGTH: 8.0 (ESTIMATED-LENGTH-REQUIRED: 8.0)

070-12292-08 4 FROM RK07-EAD 3 ON RK6110 1 IN BOX 2 OF CABINET 1 TO RK07-EAO 4
LENGTH: 8.0 (ESTIMATED-LENGTH-REQUIRED: 8.0)

070-12292-08 5 FROM RKO7-EAO 2 ON RK6110 1 IN BOX 2 OF CABINET 1 TO RKO7-EAO 3
LENGTH: 8.0 (ESTIMATED-LENGTH-REQUIRED: 8.0)

070-12292-08 6 FROM RKO7-EAO 1 ON RK6110 1 IN BOX 2 OF CABINET 1 TO RKO7-EA* 2
LENGTH: 8.0 (ESTIMATED-LENGTH-REQUIRED: 8.0)

070-12292-08 7 FROM RKO7-EAO 0 ON RK61I* 1 IN BOX 2 OF CABINET 1 TO RKO7-EA* I
LENGTH: 8.0 (ESTIMATED-LENGTH-REQUIRED: 8.0)

BC06S-25 1 FROM MBA 0 TO MB-DEVICE 0 (RPO6-BAO)
LENGTH: 25.0 (ESTIMATED-LENGTH-REQUIRED: 29.6)

BCO6S-03 1 FROM MB-DEVICE 3 (RPO5-BAO) ON MBA 0 TO MB-DEVICE 4 (RPO-AAO)

LENGTH: 3.0 (ESTIMATED-LENGTH-REQUIRED: 9.0)

BCOOS-03 2 FROM MB-DEVICE 2 (RPO6-BAO) ON MBA 0 TO MB-DEVICE 3 (RP05-BAO)

46

LENGTH: 3.0 (ESTIMATED-LENGTH-REQUIRED: 9.0)

BCOOS-03 3 FROM MB-DEVICE 2 (RPO5-BAO) ON MBA 1 TO MB-DEVICE 3 (RPOG-BA*)
LENGTH: 3.0 (ESTIMATED-LENGTH-REQUIRED: 9.0)

BCO6S-03 4 FROM MB-DEVICE 1 (RPO6-BA*) ON MBA 0 TO MB-DEVICE 2 (RPO6-BAO)
LENGTH: 3.0 (ESTIMATED-LENGTH-REQUIRED: 9.0)

BCO8S-03 5 FROM MB-DEVICE 1 (RPO5-BA*) ON MBA 1 TO MB-DEVICE 2 (RPO5-BA*)
LENGTH: 3.0 (ESTIMATED-LENGTH-REQUIRED: 9.0)

SC06S-03 6 rROM MB-DEVICE 0 (RPO5-BAO) ON MBA 0 TO MB-DEVICE 1 (RPO6-BA*)
LENGTH: 3.0 (ESTIMATED-LENGTH-REQUIRED: 9.0)

BCOGS-03 7 FROM MB-DEVICE 0 (RPO5-BAO) ON MBA 1 TO MB-DEVICE I (RPOS-BAO)
LENGTH: 3.0 (ESTIMATED-LENGTH-REQUIRED: 9.0)

BCOeS-03 8 FROM MBA 1 TO MB-DEVICE 0 (RPO5-BAO)
LENGTH: 3.0 (ESTIMATED-LENGTH-REQUIRED: 25.3)

BCO0S-03 9 FROM MB-DEVICE 4 (RPO5-AA*) ON MBA 0 TO TMO3-FAO IN MB-DEVICE 6 (TE16-AEO)
LENGTH: 3.0 (ESTIMATED-LENGTH-REQUIRED: 27.0)

070-11212-25 1 FROM LP11 1 IN BOX 2 OF CABINET 1 TO A LP14-CA
LENGTH: 25.0 (ESTIMATED-LENGTH-REQUIRED: 66.6)

BC05F-16 I FROM SLOT 8 IN PANEL 2 OF CABINET 1 TO A LA36-CE*
LENGTH: 16.0 (ESTIMATED-LENGTH-REQUIRED: 45.6)

BC05F-16 2 FROM SLOT 0 IN PANEL 2 OF CABINET 1 TO A LA36-CE*
LENGTH: 16.0 (ESTIMATED-LENGTH-REQUIRED: 47.3)

017-00087-03 1 FROM THE CPU CABINET TO CPU EXPANSION CABINET 1
LENGTH: 1.5 (ESTIMATED-LENGTH-REQUIRED: 1.5)

017-00087-03 2 FROM THE CPU CABINET TO CPU EXPANSION CABINET I
LENGTH: 1.5 (ESTIMATED-LENGTH-REQUIRED: 1.6)

017-00087-03 3 FROM THE CPU CABINET TO CPU EXPANSION CABINET 1
LENGTH: 1.5 (ESTIMATED-LENGTH-REQUIRED: 1.6)

017-00087-03 4 FROM THE CPU CABINET TO CPU EXPANSION CABINET 1
LENGTH: 1.6 (ESTIMATED-LENGTH-REQUIRED: 1.6)

017-00087-03 6 FROM THE CPU CABINET TO CPU EXPANSION CABINET 1
LENGTH: 1.5 (ESTIMATED-LENGTH-REQUIRED: 1.5)

017-00087-03 6 FROM THE CPU CABINET TO CPU EXPANSION CABINET 1
LENGTH: 1.6 (ESTIMATED-LENGTH-REQUIRED: 1.5)

BCO8S-15 1 FROM DZ21-DO 2 IN BOX 2 OF CABINET 1 TO PANEL 2
LENGTH: 16.0 (ESTIMATED-LENGTH-REQUIRED: 4.0)

BCOS-16 2 FROM DZ11-D 1 IN BOX 2 OF CABINET 1 TO PANEL 2
LENGTH: 16.0 (ESTIMATED-LENGTH-REQUIRED: 4.0)

BC0W-15 1 FROM DZ1I-BO 2 IN BOX 1 OF CABINET 1 TO PANEL 1
LENGTH: 15.0 (ESTIMATED-LENGTH-REQUIRED: 4.0)

BC06W-15 2 FROM DZ11-Bs I IN BOX 1 OF CABINET I TO PANEL I
LENGTH: 16.0 (ESTIMATED-LENGTH-REQUIRED: 4.0)

47

CABINET: 011780-CAO NUMBER 0 (FRONT VIEW)

CPU USA MEMORY USA MBA SXM3
0 1 0

H17100-A H7100-A H7100-A H17100-A H17100-A
FPA CPU USA MEMORY USA
AC-tPOWER AC-POWER AC-POWER AC-POWER AC-POWER

H17101 H17102 H17101
H47103

H17112-A

H17111-A

KC780-AA

CPU (BACKPLANE: 070-13628-00)
KA780-AA* ((29 M8236) (23 148236) (22 148234) (20 M8233) (16 148232) (15 18231)

1 I4 M8230) (13 M8229) (12 M8228) (11 M8227) (10 148226) (9 M8225))8 148224)
7 148223) (6 M8222) (5 M8221) (4148220) (3148219) (2 M8218) (1 M827))

SIMULATOR-MODULES ((18 70-14103))
FP780-AAs ((28 M8289) (27 M8288) (26 M8287) (25 148286) (24 M48285))

USA 0 (BACKPLANE: 070-13626-00)
DW780 ((5 070-14103-00) (5 070-14103-00) (4 M8273) (3 148272) (2 148271) (1 M85270))

MEMORY (BACKPLANE: 070-13625-00)
MS780-CAO ((20 148214) (19 148213) (18 148212))
MS780-DC (17 148210) (10 148210) (15 148210) (14 148210))
1580DC (13 148210) (12 148210) (11 148210) (10 148210))
145780-DC (9 18 210)(8 M3s210) (7 148213) (6 148210))
MS780-DA 1(6 M8210)
SIIULATOR-MODULES ((4 70-14103) (3 70-14103) (2 70-14103))

USA I (BACKPLANE: 070-13626-00)
DW780 ((6 070-14103-00) (5 070-124103-00) (4 148273) (3 148272) (2 148271) (1 148270))

NBA 0 (BACKPLANE: 070-13827-00)
RH1780 ((6 070-14103-00 119041)(070-14103-00) (4 148278) (3 148277) (2 148276) (1 148276))

SIM3 I (BACKPLANE: NONE)
OPTION-SIlIULATOR ((74-18975))

48

CABINET: H9602-HA* NUMBER I (FRONT VIEW)

MEMORY MBA END Sims
1 2

H7100-A H7100-A
MEMORY MBA
AC-POWER AC-POWER
H7 102
H7103

MEMORY (BACKPLANE: 070-13625-00)
MS78O-CA* ((20 M8214) (19 M8213) (18 M8212))
MS780-DC ((17 M8210) (16 M8210) (16 M8210) (14 M8210))
MS780-DC ((13 M8220) (12 M48210) (11 M8210) (10 M8210))
MS780-DC ((9 M8210) (8 M8210) (7 M8210) (8 M8210))
MS780-DA ((6 M48210))
SIMULATOR-MODUILES ((4 70-14103) (3 70-14103) (2 70-14103))

MBA I (BACKPLANE: 070-13627-00)
RH780 ((6 070-14103-00 149041) (5 070-14103-00) (4 M48278) (3 M8277) (2 M$8276) (1 M8275))

END (BACKPLANE: NONE)
SBI-TERMINATOR (M1943 (74-18973))

SIN3 2 (BACKPLANE: NONE)
OPTION-SIMULATOR ((74-18975))

4e

CABINET: HgO02-DF NUMBER 1 (FRONT VIEW)

H317-F (BACK)
MUX-PANEL 2
DZll-D* 1 IN BOX 2
DZ11-D* 2 IN BOX 2

BAll-KE*
BOX 2
UBA 1

H317-E (BACK)
MUX-PANEL 1
DZll-B* I IN BOX 1
OZ11-B* 2 IN BOX 1

BA1I-KE*
BOX 1
UBA 0

50

BOX: BAII-KE0 NUMBER I IN CABINET NUMBER 1 (UBA 0)
NODULES BACKPLANES

A B C D E F
DR11 I 1 M9014 XXXXXXXXXXX I M7219 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXI 070-0832g-00

2 M9680 XXXXXXXXXXX I M208 XX I M208 XX I M7821 X I 1796 XX

3 19882 X I M205 XX I M611 XX I M611 XX I M112 XX I M113 XX

M9202 XXXXXXXXXXX I M957 XX I M957 XX I M116 XX I M239 XX I

S---IIII-II-IIIIIIIIIIIIIIIIIIII-IIIIIIIIII

6 1 UNIBUS-IN XXXXXXX I I G727 XX I 070-11528
Zl-B 1 7 147819 XXX

DZII-0 2 8 M7819 XXX

9 1 M9302 XXXXXXXXXXX I I G727 XX I I
10 IIII-IIIII-IIIIIIIIIIIII--- IIIIIIIIIIIIIIIIIIIIIIIII--I

14 IIIIII//IIIIII/III I
13 IIIIIIIIIIIIIII//I/I/II/IIIIIII III IIIIIIIIIIIIIIII-

18 --------------- ---------/l/ ///l/l /------------l/l

-- -- ----/ --// -/// -/ -////----- /---------------------ll/l

24 -li-------------------------- / -------------------- llll

" - -- = . -- - -- - - -- - - -- - -- - - -- - - -- - -- - - -- - -

51

BOX: BAll-KE0 NUMBER 2 IN CABINET NUMBER 1 (UBA 1)
MODULES BACKPLANES

A B C D E F

1 M9014 XXXXXXXXXXX I I G727 XX I 1 070-12412-00

21 -G727XX - ---
3 1 G727 XX II

--
RK6110 1 4 M7904 XXXXXXXXXXXXXXXXXXXXxXXXXXXXXxXXxxxxxxxxxxxXXXXXXxx I

6 IM7903 XXX

--
6 IM7902 XXX

7 ID 2M7901 XXX

83 I78147900 XXX--
9 1 19202 XXXXXXXXXXX I7258 XXXXXXXXXXXXXXXX--X---- XX-X-X- X

1---

I 12 I 47814 XXXXXXXXX I G727 XX XXXXXXXi4

DZ1-D* 2 13 1 147814 XXX---
LP11 1 14 1 IM17258 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXI

15 1 G727 XX II---
16 I G727 XX II

----------- ------------------------------------
17 1 1G727 XX1 I

1s 1 16727 XX I
19 M9302 XXXXXXXXXXX I I G727 XX I

20 I/IIIIII I~IIIII//lill////ll iiiii/l/lll 'li/llll/I///l

21
21 I-IIIIIII'IIIIIIIIIIIIIIIIIIIIIIIIIII11111-111-111-1-1

22 --------------- 11111111111-111111111111111111-1----11-1-1-
23 IIIII/11////1//I111111111111111111

24 /11/11//////I/1111//I///I/////I/I/I//I//I////////////

52

APPENDIX 3
The rules shown here are the OPS4 equivalents of the rules in Figures 2-4 and 2-5. It will be

apparent, even to the most casual peruser, that my English renderings of the rules do not capture all

of the information that the rules contain. In order to read the OPS4 rules, one must know that a

symbol prefixed with "=" is a variable; it matches any single (subelement within a) working memory

element. If a variable occurs multiple times within the conditional part of a rule, all occurrences must

match equal objects. The symbol "=" by itself (ie, unprefixed) is a "don't care" symbol. A symbol

prefixed with "#" is a not-variable (so # x will match any symbol except the symbol bound to = x). A

symbol prefixed with "" is a greater-than-or-equal-to variable, and a symbol prefixed with "" is a

less-than-or-equal-to variable. A variable which is preceeded by "!" is a segment variable; it must be

the last symbol in a list and matches everything up to the end of (the corresponding list in) the working

memory element. The pattern-and, "&", specifies that the structures to its immediate left and right

must match the same working memory element. A condition can be negated with "-"; in order for a

production with a negated condition to be satisfied, there must be no element in working memory that

matches it.

ASSIGN-POWER-SUPPLY-O
((CONTEXT-ACTIVE -CABINET ASSIGN-POWER-SUPPLY -TIME)
-(CONTEXT-ACTIVE - - >TIME & #TIME)
(COMPONENT -SBI-MODULE STCI (CONFIGURED -TYPE SBI-MODULE -))
(COMPONENT -SBI-MODULE NEXUS -NEXUS)
-(COMPONENT - STCI (NOT-CONFIGURED AC-POWER POWER-SUPPLY))
(TEMPLATE -CABINET POWER-SUPPLY (- (- -NEXUS I -)))
(RESULT-GLOBAL VOLTAGE-AND-FREQUENCY -VF)

((FIND-TOKEN> POWER-SUPPLY (STCI2 AC-POWER VOLTAGE-AND-FREQUENCY -VF SUPPORTED YES)
(STCI COMPONENT-LIST SUPPORTED)

(ORIGIN (ADDED-BY-RULE ASSIGN-POWER-SUPPLY-O))))

ASSIGN-POWER-SUPPLY-I
(CONTEXT-ACTIVE -CABINET ASSIGN-POWER-SUPPLY -TIME)
-(CONTEXT-ACTIVE - - >TIME & #TIME)
(LIST-INCOMPLETE -CABINET CABINET I -LIST) & -L
(COMPONENT -SBI-MODULE STCI (CONFIGURED -TYPE SBI-MODULE))
(COMPONENT -SBI-MODULE NEXUS -NEXUS) & -C1
(COMPONENT -POWER STCI (NOT-CONFIGURED AC-POWER POWER-SUPPLY -ITEM)) & -C2
(TEMPLATE -CABINET POWER-SUPPLY (, (- -NEXUS -CO-ORDINATES -))) & -T

((DELETE> -L)
(<ADD> (LIST-INCOMPLETE -CABINET CABINET I -LIST

((-ITEM) -CO-ORDINATES ((-TYPE) (AC-POWER)))))
(<DELETE) -T) ((DELETE> -C1)
((REPLACE> 4 -C2 (CONFIGURED AC-POWER POWER-SUPPLY -ITEM)))

53

ASSIGN-POWER-SUPPLY-6
((CONTEXT-ACTIVE -CABINET ASSIGN-POWER-SUPPLY -TIME)

-(CONTEXT-ACTIVE - - >TIME & #TIME)
(LIST-INCOMPLETE -CABINET CABINET I -LIST)
(COMPONENT -UBA STCI (CONFIGURED UBA SBI-MODULE -))
(COMPONENT -UBA NEXUS -NEXUS)
(COMPONENT -POWER SFCI (NOT-CONFIGURED AC-POWER POWER-SUPPLY -ITEM))
(TEMPLATE -CABINET POWER-SUPPLY (- (- -NEXUS -CO-ORDINATES -)))
-(COMPONENT -REGULATOR STCI (NOT-CONFIGURED REGULATOR POWER-SUPPLY H7101))

((GENERATE-TOKENS> (H7101) (STCI COMPONENT-LIST)
(ORIGIN (ADDED-BY-RULE ASSIGN-POWER-SUPPLY-6))))

ASSIGN-POWER-SUPPLY-7
((CONTEXT-ACTIVE -CABINET ASSIGN-POWER-SUPPLY -TIME)

-(CONTEXT-ACTIVE - - >TIME & #TIME)
(LIST-INCOMPLETE -CABINET CABINET I -LIST) & -L
(COMPONENT -UBA STCI (CONFIGURED UBA SBI-MODULE -))
(COMPONENT -UBA NEXUS -NEXUS) & -Cl
(COMPONENT -POWER STCI (NOT-CONFIGURED AC-POWER POWER-SUPPLY -ITEM)) & -C2
(TEMPLATE -CABINET POWER-SUPPLY (- (- -NEXUS -CO-ORDINATES -))) & -T
(COMPONENT -REGULATOR STCI (NOT-CONFIGURED REGULATOR POWER-SUPPLY H7101)) & -C3

(<DELETE> -L)
(<ADD> (LIST-INCOMPLETE -CABINET CABINET I -LIST

((-ITEM) -CO-ORDINATES ((UBA) (AC-POWER) (H7101)))))
(<DELETE> -T) (<DELETE> -Cl)
(<REPLACE> 4 -C2 (CONFIGURED AC-POWER POWER-SUPPLY -ITEM))
((REPLACE> 4 -C3 (CONFIGURED REGULATOR POWER-SUPPLY H7101)))

CHECK-VOLTAGE-AND-FREQUENCY-1
((CONTEXT-ACTIVE SYSTEM CHECK-VOLTAGE-AND-FREQUENCY -TIME)

-(CONTEXT-ACTIVE a - >TIME & #TIME)
(COMPONENT -X1 VOLTAGE-AND-FREQUENCY -VF1)
(COMPONENT -X2 & #Xl VOLrAGE-AND-FREQUENCY -VF2 & #VF1)
-(COMPONENT -XI VOLTAGE-AND-FREQUENCY -VF2)
-(COMPONENT -X2 VOLTAGE-AND-FREQUENCY -VF1)

(<ADD> (CONTEXT-ACTIVE SYSTEM FIX-VOLTAGE-MISMATCH (<BIND>))))

VERIFY-SBI-AND-MB-DEVICE-ADEQUACY-3
((CONTEXT-ACTIVE SYSTEM VERIFY-SBI-AND-MB-DEVICE-ADEQUACY -TIME)
-(CONTEXT-ACTIVE - - >TIME & #fIME)
(COMPONENT -CONTROLLER STCI (NOT-CONFIGURED MEMORY-CONTROLLER SBI-MODULE -ITEM)) & -C
(RESULT-GLOBAL MEMORY-CONTROLLER -NUMBER & (@GREATER 2)) & -D

(<REPLACE> 3 -D (@- -NUMBER 1))
(<REPLACE> 4 -C (NOT-SUPPORTED MEMORY-CONTROLLER SBI-MODULE -ITEM))
(<ADD> (COMPONENT -CONTROLLER RATIONALE

(SINCE ONLY 2 MEMORY CONTROLLERS ARE PERMITTED PER SYSTEM))))

54

ASSIGN-UB-MODULES-EXCEPT-THOSE-CONNECTING-TO-PANELS-4
(CONTEXT-ACTIVE SYSTEM ASSIGN-UB-MODULES-EXCEPT-THOSE-CONNECTING-TO-PANELS -TIME)
-(CONTEXT-ACTIVE - - >TIME & #TIME)
(COMPONENT -MODULEl STCI (- DISK-DRIVE UB-MODULE -ITEMI))
(COMPONENT -MODULEl NUMBER-OF-UB-DEVICES-SUPPORTED -NUMBER)
(COMPONENT -MODULE2 & #MODULE1 STCI (- DISK-DRIVE UB-MODULE -ITEM2))
(COMPONENT -MODULE2 NUMBER-OF-UB-DEVICES-SUPPORTED -NUMBER)
(COMPONENT -DEVICE STCI (- DISK-DRIVE UB-DEVICE i))

(COMPONENT -DEVICE PORTS 2)
(COMPONENT -DEVICE UB-MODULE-REQUIRED -ITEMI) & =CI
(COMPONENT -DEVICE UB-MODULE-REQUIRED -ITEM2) & -CZ
-(ASSIGNMENT-PERMANENT a UB-DEVICE-TO-UB-MODULE -MODULE1)
-(ASSIGNMENT-PERMANENT - UB-DEVICE-TO-UB-MODULE -MODULE)
-(ASSIGNMENT-PERMANENT -DEVICE UB-DEVICE-TO-UB-MODULE I -)

(<DELETE> -Cl) (<DELETE> -C2)
(<ADD> (RESULT-GLOBAL DUAL-UB-MODULES -MODULE1 -MODULE2))
(<ADD> (RESULT-LOCAL NUMBER-OF-DEVICES-ON-MODULE -MODULE1 1))
(<ADD> (RESULT-LOCAL NUMBER-OF-DEVICES-ON-HODULE -MODULE2 1))
(<ADD> (ASSIGNMENT-PERMANENT -DEVICE UB-DEVICE-TO-UB-MODULE •MODULEl 0))
((ADD> (ASSIGNMENT-PERMANENT -DEVICE UB-DEVICE-TO-UB-MODULE -MODULE2 0))

SELECT-BOX-AND-UB-MODULE- FOR-NEXT-SU-2
((CONTEXT-ACTIVE SYSTEM SELECT-BOX-AND-UB-MODULE-FOR-NEXT-SU -TIME)

-(CONTEXT-ACTIVE - - >TIME & #TIME)
(ASSIGNMENT-PERMANENT -MODULE POSITION-IN-OPTIMAL-SEQUENCE -POSITION)
-(ASSIGNMENT-PERMANENT - POSITION-IN-OPTIMAL-SEQUENCE <POSITION & #POSITION)
(COMPONENT -MODULE STCI (PENDING - UB-MODULE -ITEM))
(COMPONENT -MODULE SUS (- -SUS))
(TEMPLATE -BOX SUS-REMAINING >SUS)
-(RESULT-LOCAL NEXT-UB-MODULE I -)
(RESULT-LOCAL BACKPLANE-BOX-UNUMBER-UPOSITION-AND-BPNUMBER

NOT-ASSIGNED -BOX -UNUMBER a -BPNUMBER)
-(RESULT-LOCAL BACKPLANE-BOX-UNUMBER-UPOSITION-AND-BPNUMBER

NOT-ASSIGNED #BOX - - <BPNUMBER & #BPNUMBER)

(<ADD> (RESULT-LOCAL NEXT-1:B-MODULE -MODULE OPTIMAL -BOX)))

PUT-UB-MODULE-B
((CONTEXT-ACTIVE -BOX PUT-UB-MODULE -TIME)
-(CONTEXT-ACTIVE - a >TIME & #TIME)
(RESULT-LOCAL NEXT-UB-MODULE -NAME - -BOX)
(COMPONENT -NAME STCI (PENDING MULTIPLEXER-TERMINAL-INTERFACE UB-MODULE -ITEM))
(COMPONENT -NAME SLOTS-REQUIRED (-SLOTS-REQUIRED -BACKPLANE-TYPE I i))
(TEMPLATE -BACKPLANE SLOTS-AVAILABLE (-10 >SLOTS-REQUIRED -BACKPLANE-TYPE))
(TEMPLATE -BACKPLANE CURRENT-UB-LOAD -CURRENT-LOAD)
(TEMPLATE -BOX BACKPLANE-POSITION -POSITION)
(ASSIGNMENT-PERMANENT -NAME POSITION-IN-OPTIMAL-SEQUENCE -)
-(RESULT-LOCAL POSSIBLE-MULTIPLEXER-AND-BOX-POSITION -NAME I -)

((ADD> (CONTEXT-ACTIVE -BOX ASSOCIATE-MULTIPLEXER-WITH-PANEL-SLOT (<BIND>))))

CHECK-FOR-UB-JUMPER-CHANGES-B
((CONTEXT-ACTIVE -BOX CHECK-FOR-UB-JUMPER-CHANGES -TIME)
-(CONTEXT-ACTIVE - - >TIME & #TIME)
(TEMPLATE -BOX HALF 2)
(ASSIGNMENT-TEMPORARY -BOX BOX-TO-UBX-CABINET w a 2 -UNUMBER -UPOSITION)
(ASSIGNMENI-PENDING - BOX-TO-UBX-CABINET - - - UNUMBER >UPOSITION & #UPOSITION)
(RESULT-LOCAL JUMPER-CABLE -BOX -ITEM & (@NOTANY BCIlA-lO) -SLOT -LATERAL) & -Dl
-(RESULT-LOCAL JUMPER-CABLE -BOX -)SLOT & #SLOT -)
(LIST-TENTATIVE -BOX BOX I -LIST)
(COMPONENT -NAME STCI (TEMPORARILY-CONFIGURED UB-JUMPER CABLE -ITEM)) & wC1
(COMPONENT - STCI (NOT-CONFIGURED UB-JUMPER CABLE BCIlA-lO)) & -C2
(RESULT-GLOBAL UB-LENGTH -UNUMBER -LENGTH) & -D2

(<REPLACE> 4 -DI BCIlA-lO)
((REPLACE> 4 -02 (@+ 10.0 -LENGTH))
(<REPLACE> 4 -C (NOT-COt!FIGURED UB-JUMPFR CABLE -ITEM))
(<REPLACE> 4 -C2 (TEMPORARILY-CONFIGUHED UB-JUMPER CABLE ECIIA-1O)))

